Nuprl Lemma : face-forall-implies-1

[H:j⊢]. ∀[phi:{H.𝕀 ⊢ _:𝔽}]. ∀[X:Top].  H ⊢ ((∀ phi)  (phi)[1(𝕀)])


Proof




Definitions occuring in Statement :  face-forall: (∀ phi) face-term-implies: Gamma ⊢ (phi  psi) face-type: 𝔽 interval-1: 1(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] top: Top
Definitions unfolded in proof :  uall: [x:A]. B[x] interval-1: 1(𝕀) csm-id-adjoin: [u] csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x face-term-implies: Gamma ⊢ (phi  psi) all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B interval-presheaf: 𝕀 names: names(I) uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: cc-adjoin-cube: (v;u) cube-context-adjoin: X.A pi1: fst(t) pi2: snd(t) squash: T true: True cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice and: P ∧ Q guard: {T} iff: ⇐⇒ Q rev_implies:  Q DeMorgan-algebra: DeMorganAlgebra nc-1: (i1) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) face-forall: (∀ phi) cubical-term-at: u(a) nc-p: (i/z) csm-ap-term: (t)s
Lemmas referenced :  nc-1_wf new-name_wf interval-type-at I_cube_pair_redex_lemma dM_inc_wf add-name_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self cubical-term-at-morph cube-context-adjoin_wf interval-type_wf face-type_wf cubical_set_cumulativity-i-j cc-adjoin-cube_wf cube-set-restriction_wf nc-s_wf f-subset-add-name face-type-at face-type-ap-morph cube_set_restriction_pair_lemma equal_wf squash_wf true_wf istype-universe cubical-term-at_wf I_cube_wf fset_wf cubical-term_wf cubical-type-cumulativity2 cubical-type_wf istype-cubical-type-at subtype_rel_self lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf face-forall_wf lattice-1_wf istype-top cubical_set_wf cube-set-restriction-comp iff_weakening_equal cube-set-restriction-id s-comp-nc-1 dM_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf dM1_wf dM-lift-inc dM1-sq-singleton-empty eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int eq_int_eq_true btrue_wf not_assert_elim btrue_neq_bfalse full-omega-unsat intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf interval-type-ap-morph fl_all-implies-instance
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry Error :memTop,  dependent_functionElimination because_Cache dependent_set_memberEquality_alt universeIsType intEquality independent_isectElimination natural_numberEquality instantiate hyp_replacement imageElimination universeEquality dependent_pairEquality_alt imageMemberEquality baseClosed productEquality cumulativity isectEquality equalityIstype productElimination independent_functionElimination unionElimination equalityElimination dependent_pairFormation_alt promote_hyp voidElimination approximateComputation int_eqEquality

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H.\mBbbI{}  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[X:Top].    H  \mvdash{}  ((\mforall{}  phi)  {}\mRightarrow{}  (phi)[1(\mBbbI{})])



Date html generated: 2020_05_20-PM-03_03_01
Last ObjectModification: 2020_04_04-PM-05_19_26

Theory : cubical!type!theory


Home Index