Nuprl Lemma : face-forall_wf

[Gamma:j⊢]. ∀[phi:{Gamma.𝕀 ⊢ _:𝔽}].  ((∀ phi) ∈ {Gamma ⊢ _:𝔽})


Proof




Definitions occuring in Statement :  face-forall: (∀ phi) face-type: 𝔽 interval-type: 𝕀 cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-term: {X ⊢ _:A} all: x:A. B[x] subtype_rel: A ⊆B face-forall: (∀ phi) uimplies: supposing a interval-presheaf: 𝕀 names: names(I) nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: true: True nc-e': g,i=j implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q bnot: ¬bb not: ¬A false: False exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) assert: b nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] eq_atom: =a y free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) cubical-type-at: A(a) pi1: fst(t) interval-type: 𝕀 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-type: 𝔽 face-presheaf: 𝔽 face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) bdd-distributive-lattice: BoundedDistributiveLattice
Lemmas referenced :  I_cube_wf names-hom_wf fset_wf nat_wf istype-cubical-type-at cube-set-restriction_wf face-type_wf cubical-type-ap-morph_wf cubical-term_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf cubical_set_wf fl_all_wf new-name_wf cubical-term-at_wf add-name_wf cc-adjoin-cube_wf nc-s_wf f-subset-add-name interval-type-at I_cube_pair_redex_lemma dM_inc_wf trivial-member-add-name1 fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self face-type-at face-type-ap-morph cubical-term-at-morph nc-e'_wf cc-adjoin-cube-restriction interval-type-ap-morph lattice-point_wf face_lattice_wf eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert assert_elim bnot_wf equal_wf bool_wf eq_int_eq_true subtype_rel_self iff_weakening_equal bfalse_wf btrue_neq_bfalse bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int btrue_wf not_assert_elim full-omega-unsat intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf squash_wf true_wf istype-universe cubical-type-cumulativity2 cubical-type_wf dM-lift-inc cubical-type-at_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf cube-set-restriction-comp nh-comp_wf nc-e'-lemma3 fl-morph_wf fl-morph-fl_all
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt lambdaFormation_alt hypothesis universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality inhabitedIsType sqequalRule functionIsType because_Cache equalityIstype instantiate applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies functionExtensionality dependent_functionElimination independent_isectElimination Error :memTop,  lambdaEquality_alt setElimination rename intEquality natural_numberEquality unionElimination equalityElimination productElimination imageElimination imageMemberEquality baseClosed universeEquality independent_functionElimination independent_pairFormation productIsType applyLambdaEquality voidElimination dependent_pairFormation_alt promote_hyp cumulativity approximateComputation int_eqEquality productEquality isectEquality hyp_replacement

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma.\mBbbI{}  \mvdash{}  \_:\mBbbF{}\}].    ((\mforall{}  phi)  \mmember{}  \{Gamma  \mvdash{}  \_:\mBbbF{}\})



Date html generated: 2020_05_20-PM-02_49_47
Last ObjectModification: 2020_04_04-PM-05_06_06

Theory : cubical!type!theory


Home Index