Nuprl Lemma : fl-morph-fl_all
∀[I,J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[j:{i:ℕ| ¬i ∈ J} ]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[psi:Point(face_lattice(I+i))].
  (((∀i.psi))<f> = (∀j.(psi)<f,i=j>) ∈ Point(face_lattice(J)))
Proof
Definitions occuring in Statement : 
fl_all: (∀i.phi)
, 
fl-morph: <f>
, 
face_lattice: face_lattice(I)
, 
nc-e': g,i=j
, 
add-name: I+i
, 
names-hom: I ⟶ J
, 
lattice-point: Point(l)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
nat: ℕ
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
compose: f o g
, 
fl_all: (∀i.phi)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
names: names(I)
, 
true: True
, 
nc-e': g,i=j
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
dM_inc: <x>
, 
DeMorgan-algebra: DeMorganAlgebra
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
eq_atom: x =a y
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
dM_opp: <1-x>
, 
nequal: a ≠ b ∈ T 
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
top: Top
, 
names-hom: I ⟶ J
, 
fl-all-hom: fl-all-hom(I;i)
, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1)
, 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
fl-morph: <f>
Lemmas referenced : 
lattice-point_wf, 
face_lattice_wf, 
add-name_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
set_wf, 
nat_wf, 
not_wf, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
names-hom_wf, 
fset_wf, 
face_lattice-hom-equal, 
names_wf, 
compose-bounded-lattice-hom, 
bdd-distributive-lattice-subtype-bdd-lattice, 
fl-all-hom_wf, 
all_wf, 
face_lattice-point-subtype, 
f-subset-add-name, 
fl0_wf, 
trivial-member-add-name1, 
lattice-0_wf, 
fl1_wf, 
fl-morph_wf, 
nc-e'_wf, 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
squash_wf, 
true_wf, 
fl_all-fl0, 
fl_all_wf, 
fl-morph-fl0, 
iff_weakening_equal, 
names-deq_wf, 
dM-to-FL_wf, 
dM_wf, 
DeMorgan-algebra-structure_wf, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra-axioms_wf, 
dm-neg-inc, 
subtype_rel-equal, 
free-DeMorgan-lattice_wf, 
dM-to-FL-opp, 
fl-morph-0, 
nat_properties, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
not-added-name, 
dm-neg_wf, 
dM-point-subtype, 
rec_select_update_lemma, 
subtype_rel_self, 
dM-to-FL-sq, 
dm-neg-sq, 
fl_all-id, 
fl_all-fl1, 
fl-morph-fl1, 
dM-to-FL-inc, 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
axiomEquality, 
intEquality, 
natural_numberEquality, 
lambdaFormation, 
independent_pairFormation, 
dependent_set_memberEquality, 
setEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_pairFormation, 
promote_hyp, 
independent_functionElimination, 
voidElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
int_eqEquality, 
voidEquality, 
computeAll, 
hyp_replacement, 
applyLambdaEquality, 
comment
Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[j:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  J\}  ].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].
\mforall{}[psi:Point(face\_lattice(I+i))].
    (((\mforall{}i.psi))<f>  =  (\mforall{}j.(psi)<f,i=j>))
Date html generated:
2017_10_05-AM-01_17_12
Last ObjectModification:
2017_07_28-AM-09_32_57
Theory : cubical!type!theory
Home
Index