Nuprl Lemma : fl-morph-fl_all

[I,J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[j:{i:ℕ| ¬i ∈ J} ]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[psi:Point(face_lattice(I+i))].
  (((∀i.psi))<f> (∀j.(psi)<f,i=j>) ∈ Point(face_lattice(J)))


Proof




Definitions occuring in Statement :  fl_all: (∀i.phi) fl-morph: <f> face_lattice: face_lattice(I) nc-e': g,i=j add-name: I+i names-hom: I ⟶ J lattice-point: Point(l) fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a nat: cand: c∧ B all: x:A. B[x] compose: g fl_all: (∀i.phi) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) names: names(I) true: True nc-e': g,i=j implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False squash: T iff: ⇐⇒ Q rev_implies:  Q dM_inc: <x> DeMorgan-algebra: DeMorganAlgebra lattice-point: Point(l) record-select: r.x free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] eq_atom: =a y dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) dM_opp: <1-x> nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top names-hom: I ⟶ J fl-all-hom: fl-all-hom(I;i) fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum fl-morph: <f>
Lemmas referenced :  lattice-point_wf face_lattice_wf add-name_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf set_wf nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self names-hom_wf fset_wf face_lattice-hom-equal names_wf compose-bounded-lattice-hom bdd-distributive-lattice-subtype-bdd-lattice fl-all-hom_wf all_wf face_lattice-point-subtype f-subset-add-name fl0_wf trivial-member-add-name1 lattice-0_wf fl1_wf fl-morph_wf nc-e'_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int squash_wf true_wf fl_all-fl0 fl_all_wf fl-morph-fl0 iff_weakening_equal names-deq_wf dM-to-FL_wf dM_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf dm-neg-inc subtype_rel-equal free-DeMorgan-lattice_wf dM-to-FL-opp fl-morph-0 nat_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf not-added-name dm-neg_wf dM-point-subtype rec_select_update_lemma subtype_rel_self dM-to-FL-sq dm-neg-sq fl_all-id fl_all-fl1 fl-morph-fl1 dM-to-FL-inc face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename applyEquality sqequalRule instantiate lambdaEquality productEquality cumulativity universeEquality because_Cache independent_isectElimination isect_memberEquality axiomEquality intEquality natural_numberEquality lambdaFormation independent_pairFormation dependent_set_memberEquality setEquality dependent_functionElimination equalityTransitivity equalitySymmetry unionElimination equalityElimination productElimination dependent_pairFormation promote_hyp independent_functionElimination voidElimination imageElimination imageMemberEquality baseClosed int_eqEquality voidEquality computeAll hyp_replacement applyLambdaEquality comment

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[j:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  J\}  ].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].
\mforall{}[psi:Point(face\_lattice(I+i))].
    (((\mforall{}i.psi))<f>  =  (\mforall{}j.(psi)<f,i=j>))



Date html generated: 2017_10_05-AM-01_17_12
Last ObjectModification: 2017_07_28-AM-09_32_57

Theory : cubical!type!theory


Home Index