Nuprl Lemma : fl-all-hom_wf
∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ].
  (fl-all-hom(I;i) ∈ {g:Hom(face_lattice(I+i);face_lattice(I))| 
                      (∀x:Point(face_lattice(I)). ((g x) = x ∈ Point(face_lattice(I))))
                      ∧ ((g (i=0)) = 0 ∈ Point(face_lattice(I)))
                      ∧ ((g (i=1)) = 0 ∈ Point(face_lattice(I)))} )
Proof
Definitions occuring in Statement : 
fl-all-hom: fl-all-hom(I;i)
, 
fl1: (x=1)
, 
fl0: (x=0)
, 
face_lattice: face_lattice(I)
, 
add-name: I+i
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-0: 0
, 
lattice-point: Point(l)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
names: names(I)
, 
nat: ℕ
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
true: True
Lemmas referenced : 
fl-all-hom_wf1, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
all_wf, 
face_lattice-point-subtype, 
add-name_wf, 
f-subset-add-name, 
fl0_wf, 
trivial-member-add-name1, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
fl1_wf, 
set_wf, 
not_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
fset_wf, 
face-lattice-hom-is-id, 
face_lattice_hom_subtype, 
squash_wf, 
true_wf, 
deq_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
names_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
applyLambdaEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
lambdaFormation, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
dependent_functionElimination, 
intEquality, 
natural_numberEquality, 
independent_functionElimination, 
addLevel, 
hyp_replacement, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
levelHypothesis
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].
    (fl-all-hom(I;i)  \mmember{}  \{g:Hom(face\_lattice(I+i);face\_lattice(I))| 
                                            (\mforall{}x:Point(face\_lattice(I)).  ((g  x)  =  x))  \mwedge{}  ((g  (i=0))  =  0)  \mwedge{}  ((g  (i=1))  =  0)\}  \000C)
Date html generated:
2017_10_05-AM-01_15_41
Last ObjectModification:
2017_07_28-AM-09_32_11
Theory : cubical!type!theory
Home
Index