Nuprl Lemma : fl-all-hom_wf

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ].
  (fl-all-hom(I;i) ∈ {g:Hom(face_lattice(I+i);face_lattice(I))| 
                      (∀x:Point(face_lattice(I)). ((g x) x ∈ Point(face_lattice(I))))
                      ∧ ((g (i=0)) 0 ∈ Point(face_lattice(I)))
                      ∧ ((g (i=1)) 0 ∈ Point(face_lattice(I)))} )


Proof




Definitions occuring in Statement :  fl-all-hom: fl-all-hom(I;i) fl1: (x=1) fl0: (x=0) face_lattice: face_lattice(I) add-name: I+i bounded-lattice-hom: Hom(l1;l2) lattice-0: 0 lattice-point: Point(l) fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] all: x:A. B[x] not: ¬A and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T and: P ∧ Q cand: c∧ B all: x:A. B[x] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) names: names(I) nat: guard: {T} implies:  Q not: ¬A ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top true: True
Lemmas referenced :  fl-all-hom_wf1 lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf all_wf face_lattice-point-subtype add-name_wf f-subset-add-name fl0_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf fl1_wf set_wf not_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf face-lattice-hom-is-id face_lattice_hom_subtype squash_wf true_wf deq_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf names_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename applyLambdaEquality sqequalRule imageMemberEquality baseClosed imageElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry productElimination lambdaFormation applyEquality instantiate lambdaEquality productEquality cumulativity universeEquality because_Cache independent_isectElimination independent_pairFormation dependent_functionElimination intEquality natural_numberEquality independent_functionElimination addLevel hyp_replacement unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll levelHypothesis

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].
    (fl-all-hom(I;i)  \mmember{}  \{g:Hom(face\_lattice(I+i);face\_lattice(I))| 
                                            (\mforall{}x:Point(face\_lattice(I)).  ((g  x)  =  x))  \mwedge{}  ((g  (i=0))  =  0)  \mwedge{}  ((g  (i=1))  =  0)\}  \000C)



Date html generated: 2017_10_05-AM-01_15_41
Last ObjectModification: 2017_07_28-AM-09_32_11

Theory : cubical!type!theory


Home Index