Nuprl Lemma : face-lattice-hom-is-id
∀I:fset(ℕ)
  ∀[h:Hom(face_lattice(I);face_lattice(I))]
    h = (λx.x) ∈ Hom(face_lattice(I);face_lattice(I)) 
    supposing ∀x:names(I). (((h (x=0)) = (x=0) ∈ Point(face_lattice(I))) ∧ ((h (x=1)) = (x=1) ∈ Point(face_lattice(I))))
Proof
Definitions occuring in Statement : 
fl1: (x=1)
, 
fl0: (x=0)
, 
face_lattice: face_lattice(I)
, 
names: names(I)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
fl1: (x=1)
, 
face_lattice: face_lattice(I)
, 
fl0: (x=0)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
lattice-0: 0
, 
record-select: r.x
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
lattice-1: 1
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
bounded-lattice-hom: Hom(l1;l2)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
lattice-hom: Hom(l1;l2)
, 
guard: {T}
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
face-lattice-hom-unique, 
names_wf, 
names-deq_wf, 
face-lattice_wf, 
face_lattice-deq_wf, 
face-lattice0_wf, 
face-lattice1_wf, 
lattice-0_wf, 
bdd-distributive-lattice_wf, 
lattice-1_wf, 
lattice-meet_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-point_wf, 
equal_wf, 
lattice-join_wf, 
all_wf, 
face_lattice_wf, 
fl0_wf, 
fl1_wf, 
bounded-lattice-hom_wf, 
fset_wf, 
nat_wf, 
fl-meet-0-1, 
iff_weakening_equal, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
independent_pairFormation, 
because_Cache, 
dependent_set_memberEquality, 
productElimination, 
instantiate, 
productEquality, 
cumulativity, 
universeEquality, 
independent_isectElimination, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}I:fset(\mBbbN{})
    \mforall{}[h:Hom(face\_lattice(I);face\_lattice(I))]
        h  =  (\mlambda{}x.x)  supposing  \mforall{}x:names(I).  (((h  (x=0))  =  (x=0))  \mwedge{}  ((h  (x=1))  =  (x=1)))
Date html generated:
2017_10_05-AM-01_13_09
Last ObjectModification:
2017_07_28-AM-09_30_44
Theory : cubical!type!theory
Home
Index