Nuprl Lemma : face-lattice-hom-is-id

I:fset(ℕ)
  ∀[h:Hom(face_lattice(I);face_lattice(I))]
    x.x) ∈ Hom(face_lattice(I);face_lattice(I)) 
    supposing ∀x:names(I). (((h (x=0)) (x=0) ∈ Point(face_lattice(I))) ∧ ((h (x=1)) (x=1) ∈ Point(face_lattice(I))))


Proof




Definitions occuring in Statement :  fl1: (x=1) fl0: (x=0) face_lattice: face_lattice(I) names: names(I) bounded-lattice-hom: Hom(l1;l2) lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q apply: a lambda: λx.A[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fl1: (x=1) face_lattice: face_lattice(I) fl0: (x=0) and: P ∧ Q cand: c∧ B lattice-0: 0 record-select: r.x face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt empty-fset: {} nil: [] it: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice lattice-1: 1 fset-singleton: {x} cons: [a b] bounded-lattice-hom: Hom(l1;l2) so_lambda: λ2x.t[x] prop: so_apply: x[s] lattice-hom: Hom(l1;l2) guard: {T} true: True squash: T iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  face-lattice-hom-unique names_wf names-deq_wf face-lattice_wf face_lattice-deq_wf face-lattice0_wf face-lattice1_wf lattice-0_wf bdd-distributive-lattice_wf lattice-1_wf lattice-meet_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-point_wf equal_wf lattice-join_wf all_wf face_lattice_wf fl0_wf fl1_wf bounded-lattice-hom_wf fset_wf nat_wf fl-meet-0-1 iff_weakening_equal squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule extract_by_obid dependent_functionElimination thin isectElimination hypothesisEquality hypothesis lambdaEquality applyEquality setElimination rename independent_pairFormation because_Cache dependent_set_memberEquality productElimination instantiate productEquality cumulativity universeEquality independent_isectElimination independent_pairEquality axiomEquality isect_memberEquality functionExtensionality equalityTransitivity equalitySymmetry natural_numberEquality imageElimination imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}I:fset(\mBbbN{})
    \mforall{}[h:Hom(face\_lattice(I);face\_lattice(I))]
        h  =  (\mlambda{}x.x)  supposing  \mforall{}x:names(I).  (((h  (x=0))  =  (x=0))  \mwedge{}  ((h  (x=1))  =  (x=1)))



Date html generated: 2017_10_05-AM-01_13_09
Last ObjectModification: 2017_07_28-AM-09_30_44

Theory : cubical!type!theory


Home Index