Nuprl Lemma : fl-meet-0-1
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T].  ((x=0) ∧ (x=1) = 0 ∈ Point(face-lattice(T;eq)))
Proof
Definitions occuring in Statement : 
face-lattice1: (x=1)
, 
face-lattice0: (x=0)
, 
face-lattice: face-lattice(T;eq)
, 
lattice-0: 0
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
guard: {T}
, 
prop: ℙ
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
implies: P 
⇒ Q
, 
face-lattice-constraints: face-lattice-constraints(x)
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
face-lattice: face-lattice(T;eq)
, 
fset-pair: {a,b}
, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
empty-fset: {}
, 
fl-deq: fl-deq(T;eq)
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
lattice-fset-meet: /\(s)
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
deq_wf, 
istype-universe, 
fset-singleton_wf, 
fset_wf, 
fset-member_wf, 
equal_wf, 
member-fset-pair, 
fset-pair_wf, 
union-deq_wf, 
deq-fset_wf, 
member-fset-singleton, 
free-dlwc-satisfies-constraints, 
face-lattice-constraints_wf, 
list_accum_cons_lemma, 
istype-void, 
list_accum_nil_lemma, 
face-lattice0-is-inc, 
face-lattice1-is-inc, 
face-lattice0_wf, 
face-lattice1_wf, 
fl-deq_wf, 
face-lattice_wf, 
lattice-fset-meet_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
decidable-equal-deq, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
uall_wf, 
bounded-lattice-structure-subtype, 
fset-union_wf, 
lattice-axioms_wf, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
empty-fset_wf, 
lattice-0_wf, 
squash_wf, 
true_wf, 
lattice-fset-meet-union, 
lattice-fset-meet-singleton, 
subtype_rel_self, 
iff_weakening_equal, 
reduce_nil_lemma, 
lattice-1-meet
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
universeIsType, 
hypothesisEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
extract_by_obid, 
instantiate, 
universeEquality, 
inrFormation, 
applyLambdaEquality, 
hyp_replacement, 
inlFormation, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
independent_isectElimination, 
productElimination, 
unionEquality, 
because_Cache, 
inrEquality, 
cumulativity, 
inlEquality, 
rename, 
unionElimination, 
lambdaFormation, 
lambdaEquality_alt, 
unionIsType, 
independent_functionElimination, 
inlEquality_alt, 
inrEquality_alt, 
voidElimination, 
lambdaFormation_alt, 
equalityIsType1, 
applyEquality, 
productEquality, 
setElimination, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].    ((x=0)  \mwedge{}  (x=1)  =  0)
Date html generated:
2019_10_31-AM-07_21_59
Last ObjectModification:
2018_11_08-PM-06_00_35
Theory : lattices
Home
Index