Nuprl Lemma : free-dlwc-satisfies-constraints

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))].
  ((∀x:T. ∀c:fset(T).  (c ∈ Cs[x]  x ∈ c))
   (∀x:T. ∀c:fset(T).
        (c ∈ Cs[x]
         (/\(λx.free-dlwc-inc(eq;a.Cs[a];x)"(c)) 0 ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))))))


Proof




Definitions occuring in Statement :  free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) lattice-fset-meet: /\(s) lattice-0: 0 lattice-point: Point(l) fset-image: f"(s) deq-fset: deq-fset(eq) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] top: Top so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B and: P ∧ Q prop: uimplies: supposing a bdd-distributive-lattice: BoundedDistributiveLattice lattice-0: 0 record-select: r.x free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt empty-fset: {} nil: [] it: cand: c∧ B assert: b fset-antichain: fset-antichain(eq;ac) fset-pairwise: fset-pairwise(x,y.R[x; y];s) fset-null: fset-null(s) null: null(as) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind true: True fset-all: fset-all(s;x.P[x]) uiff: uiff(P;Q) false: False not: ¬A guard: {T} f-subset: xs ⊆ ys decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q exists: x:A. B[x] squash: T free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) bool: 𝔹 unit: Unit sq_type: SQType(T) bnot: ¬bb rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P)
Lemmas referenced :  free-dlwc-point deq-fset_wf fset_wf strong-subtype-deq-subtype assert_wf fset-antichain_wf fset-all_wf fset-contains-none_wf strong-subtype-set2 lattice-fset-meet-is-glb free-dist-lattice-with-constraints_wf bdd-distributive-lattice-subtype-bdd-lattice fset-image_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf free-dlwc-inc_wf lattice-fset-meet_wf decidable__equal-free-dist-lattice-with-constraints-point isect_wf fset-member_wf lattice-le_wf all_wf deq_wf fset-extensionality empty-fset_wf mem_empty_lemma fset-member_witness false_wf fset-all-iff assert-fset-contains-none f-subset_wf decidable__assert fset-singleton_wf fset-antichain-singleton iff_weakening_uiff member-fset-singleton assert_witness member-fset-image-iff subtype_rel-equal fset-null_wf fset-filter_wf deq-f-subset_wf bool_wf iff_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot assert-fset-null fset-filter-is-empty assert-deq-f-subset exists_wf free-dlwc-le fset-ac-le-implies2 sq_stable__fset-member f-singleton-subset ifthenelse_wf equal-wf-base-T and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis cumulativity hypothesisEquality applyEquality setEquality productEquality lambdaEquality functionExtensionality independent_isectElimination equalityTransitivity equalitySymmetry productElimination because_Cache instantiate universeEquality independent_functionElimination dependent_functionElimination setElimination rename dependent_set_memberEquality natural_numberEquality independent_pairFormation functionEquality axiomEquality independent_pairEquality unionElimination hyp_replacement applyLambdaEquality dependent_pairFormation imageMemberEquality baseClosed equalityElimination promote_hyp imageElimination addLevel levelHypothesis

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].
    ((\mforall{}x:T.  \mforall{}c:fset(T).    (c  \mmember{}  Cs[x]  {}\mRightarrow{}  x  \mmember{}  c))
    {}\mRightarrow{}  (\mforall{}x:T.  \mforall{}c:fset(T).    (c  \mmember{}  Cs[x]  {}\mRightarrow{}  (/\mbackslash{}(\mlambda{}x.free-dlwc-inc(eq;a.Cs[a];x)"(c))  =  0))))



Date html generated: 2017_10_05-AM-00_39_38
Last ObjectModification: 2017_07_28-AM-09_15_38

Theory : lattices


Home Index