Step
*
of Lemma
fl-meet-0-1
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ((x=0) ∧ (x=1) = 0 ∈ Point(face-lattice(T;eq)))
BY
{ (Auto THEN Assert ⌜∀x:T + T. ∀c:fset(T + T). (c ∈ face-lattice-constraints(x)
⇒ x ∈ c)⌝⋅) }
1
.....assertion.....
1. T : Type
2. eq : EqDecider(T)
3. x : T
⊢ ∀x:T + T. ∀c:fset(T + T). (c ∈ face-lattice-constraints(x)
⇒ x ∈ c)
2
1. T : Type
2. eq : EqDecider(T)
3. x : T
4. ∀x:T + T. ∀c:fset(T + T). (c ∈ face-lattice-constraints(x)
⇒ x ∈ c)
⊢ (x=0) ∧ (x=1) = 0 ∈ Point(face-lattice(T;eq))
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[eq:EqDecider(T)]. \mforall{}[x:T]. ((x=0) \mwedge{} (x=1) = 0)
By
Latex:
(Auto THEN Assert \mkleeneopen{}\mforall{}x:T + T. \mforall{}c:fset(T + T). (c \mmember{} face-lattice-constraints(x) {}\mRightarrow{} x \mmember{} c)\mkleeneclose{}\mcdot{})
Home
Index