Nuprl Lemma : face_lattice_hom_subtype

[I,J:fset(ℕ)].  Hom(face_lattice(J);face_lattice(I)) ⊆Hom(face_lattice(I);face_lattice(I)) supposing I ⊆ J


Proof




Definitions occuring in Statement :  face_lattice: face_lattice(I) bounded-lattice-hom: Hom(l1;l2) f-subset: xs ⊆ ys fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] cand: c∧ B prop: lattice-0: 0 record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt empty-fset: {} nil: [] it: lattice-1: 1 fset-singleton: {x} cons: [a b] nat: lattice-meet: a ∧ b union-deq: union-deq(A;B;a;b) top: Top lattice-join: a ∨ b
Lemmas referenced :  subtype_rel_dep_function lattice-point_wf face_lattice_wf face_lattice-point-subtype subtype_rel_self uall_wf equal_wf lattice-meet_wf lattice-join_wf lattice-0_wf lattice-1_wf bounded-lattice-hom_wf f-subset_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf rec_select_update_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality productElimination hypothesisEquality applyEquality extract_by_obid isectElimination hypothesis because_Cache sqequalRule independent_isectElimination lambdaFormation independent_pairFormation independent_pairEquality axiomEquality isect_memberEquality productEquality functionExtensionality intEquality natural_numberEquality equalityTransitivity equalitySymmetry dependent_functionElimination voidElimination voidEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].
    Hom(face\_lattice(J);face\_lattice(I))  \msubseteq{}r  Hom(face\_lattice(I);face\_lattice(I))  supposing  I  \msubseteq{}  J



Date html generated: 2017_10_05-AM-01_15_27
Last ObjectModification: 2017_07_28-AM-09_32_03

Theory : cubical!type!theory


Home Index