Nuprl Lemma : face_lattice_hom_subtype
∀[I,J:fset(ℕ)].  Hom(face_lattice(J);face_lattice(I)) ⊆r Hom(face_lattice(I);face_lattice(I)) supposing I ⊆ J
Proof
Definitions occuring in Statement : 
face_lattice: face_lattice(I)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
prop: ℙ
, 
lattice-0: 0
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
lattice-1: 1
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
nat: ℕ
, 
lattice-meet: a ∧ b
, 
union-deq: union-deq(A;B;a;b)
, 
top: Top
, 
lattice-join: a ∨ b
Lemmas referenced : 
subtype_rel_dep_function, 
lattice-point_wf, 
face_lattice_wf, 
face_lattice-point-subtype, 
subtype_rel_self, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-0_wf, 
lattice-1_wf, 
bounded-lattice-hom_wf, 
f-subset_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
fset_wf, 
rec_select_update_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
productElimination, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
isectElimination, 
hypothesis, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
lambdaFormation, 
independent_pairFormation, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality, 
productEquality, 
functionExtensionality, 
intEquality, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
voidElimination, 
voidEquality
Latex:
\mforall{}[I,J:fset(\mBbbN{})].
    Hom(face\_lattice(J);face\_lattice(I))  \msubseteq{}r  Hom(face\_lattice(I);face\_lattice(I))  supposing  I  \msubseteq{}  J
Date html generated:
2017_10_05-AM-01_15_27
Last ObjectModification:
2017_07_28-AM-09_32_03
Theory : cubical!type!theory
Home
Index