Nuprl Lemma : fl_all-fl0

[I:fset(ℕ)]. ∀[i:ℕ]. ∀[x:names(I+i)].  ((∀i.(x=0)) if (x =z i) then else (x=0) fi  ∈ Point(face_lattice(I)))


Proof




Definitions occuring in Statement :  fl_all: (∀i.phi) fl0: (x=0) face_lattice: face_lattice(I) add-name: I+i names: names(I) lattice-0: 0 lattice-point: Point(l) fset: fset(T) nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fl_all: (∀i.phi) squash: T names: names(I) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nequal: a ≠ b ∈ 
Lemmas referenced :  fl-all-hom_wf1 names_wf add-name_wf nat_wf fset_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_subtype_base not-added-name
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyLambdaEquality setElimination rename hypothesis sqequalRule imageMemberEquality baseClosed imageElimination isect_memberEquality axiomEquality because_Cache lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination intEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].  \mforall{}[x:names(I+i)].    ((\mforall{}i.(x=0))  =  if  (x  =\msubz{}  i)  then  0  else  (x=0)  fi  )



Date html generated: 2017_10_05-AM-01_16_01
Last ObjectModification: 2017_07_28-AM-09_32_23

Theory : cubical!type!theory


Home Index