Nuprl Lemma : fl_all-fl0
∀[I:fset(ℕ)]. ∀[i:ℕ]. ∀[x:names(I+i)].  ((∀i.(x=0)) = if (x =z i) then 0 else (x=0) fi  ∈ Point(face_lattice(I)))
Proof
Definitions occuring in Statement : 
fl_all: (∀i.phi)
, 
fl0: (x=0)
, 
face_lattice: face_lattice(I)
, 
add-name: I+i
, 
names: names(I)
, 
lattice-0: 0
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fl_all: (∀i.phi)
, 
squash: ↓T
, 
names: names(I)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
fl-all-hom_wf1, 
names_wf, 
add-name_wf, 
nat_wf, 
fset_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_subtype_base, 
not-added-name
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
hypothesis, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
intEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].  \mforall{}[x:names(I+i)].    ((\mforall{}i.(x=0))  =  if  (x  =\msubz{}  i)  then  0  else  (x=0)  fi  )
Date html generated:
2017_10_05-AM-01_16_01
Last ObjectModification:
2017_07_28-AM-09_32_23
Theory : cubical!type!theory
Home
Index