Nuprl Lemma : dM-to-FL-sq

[I,J,v:Top].  (dM-to-FL(I;v) dM-to-FL(J;v))


Proof




Definitions occuring in Statement :  dM-to-FL: dM-to-FL(I;z) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dM-to-FL: dM-to-FL(I;z) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) lattice-0: 0 lattice-join: a ∨ b union-deq: union-deq(A;B;a;b) lattice-fset-meet: /\(s) lattice-meet: a ∧ b face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) all: x:A. B[x] top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt lattice-1: 1
Lemmas referenced :  rec_select_update_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis sqequalAxiom lemma_by_obid sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache dependent_functionElimination voidElimination voidEquality

Latex:
\mforall{}[I,J,v:Top].    (dM-to-FL(I;v)  \msim{}  dM-to-FL(J;v))



Date html generated: 2016_05_18-PM-00_11_54
Last ObjectModification: 2016_03_26-PM-08_35_05

Theory : cubical!type!theory


Home Index