Nuprl Lemma : fl_all_wf
∀[I:fset(ℕ)]. ∀[i:ℕ]. ∀[phi:Point(face_lattice(I+i))].  ((∀i.phi) ∈ Point(face_lattice(I)))
Proof
Definitions occuring in Statement : 
fl_all: (∀i.phi)
, 
face_lattice: face_lattice(I)
, 
add-name: I+i
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fl_all: (∀i.phi)
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
guard: {T}
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
implies: P 
⇒ Q
, 
names: names(I)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
Lemmas referenced : 
lattice-point_wf, 
face_lattice_wf, 
add-name_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
nat_wf, 
fset_wf, 
fl-all-hom_wf1, 
bounded-lattice-hom_wf, 
all_wf, 
names_wf, 
not_wf, 
fl0_wf, 
names-subtype, 
f-subset-add-name, 
fl1_wf, 
trivial-member-add-name1, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
lattice-0_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
setElimination, 
rename, 
setEquality, 
functionEquality, 
intEquality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
natural_numberEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].  \mforall{}[phi:Point(face\_lattice(I+i))].    ((\mforall{}i.phi)  \mmember{}  Point(face\_lattice(I)))
Date html generated:
2017_10_05-AM-01_15_48
Last ObjectModification:
2017_07_28-AM-09_32_15
Theory : cubical!type!theory
Home
Index