Nuprl Lemma : fl_all-fl1
∀[I:fset(ℕ)]. ∀[i:ℕ]. ∀[x:names(I+i)].  ((∀i.(x=1)) = if (x =z i) then 0 else (x=1) fi  ∈ Point(face_lattice(I)))
Proof
Definitions occuring in Statement : 
fl_all: (∀i.phi), 
fl1: (x=1), 
face_lattice: face_lattice(I), 
add-name: I+i, 
names: names(I), 
lattice-0: 0, 
lattice-point: Point(l), 
fset: fset(T), 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
fl_all: (∀i.phi), 
squash: ↓T, 
names: names(I), 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
fl-all-hom_wf1, 
names_wf, 
add-name_wf, 
nat_wf, 
fset_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_subtype_base, 
not-added-name
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
hypothesis, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
intEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].  \mforall{}[x:names(I+i)].    ((\mforall{}i.(x=1))  =  if  (x  =\msubz{}  i)  then  0  else  (x=1)  fi  )
Date html generated:
2017_10_05-AM-01_15_55
Last ObjectModification:
2017_07_28-AM-09_32_19
Theory : cubical!type!theory
Home
Index