Nuprl Lemma : fl_all-implies-instance

[I:fset(ℕ)]. ∀[x:Point(dM(I))]. ∀[i:ℕ]. ∀[v:Point(face_lattice(I+i))].
  (((∀i.v) 1 ∈ Point(face_lattice(I)))  ((v)<(i/x)> 1 ∈ Point(face_lattice(I))))


Proof




Definitions occuring in Statement :  fl_all: (∀i.phi) fl-morph: <f> face_lattice: face_lattice(I) nc-p: (i/z) add-name: I+i dM: dM(I) lattice-1: 1 lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] implies:  Q apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a DeMorgan-algebra: DeMorganAlgebra guard: {T} bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q top: Top cand: c∧ B or: P ∨ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) names: names(I) nat: sq_type: SQType(T) ifthenelse: if then else fi  btrue: tt not: ¬A bfalse: ff false: False lattice-1: 1 record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] eq_atom: =a y fset-singleton: {x} cons: [a b]
Lemmas referenced :  equal_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf fl_all_wf lattice-1_wf bdd-distributive-lattice_wf add-name_wf nat_wf dM_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf fset_wf face_lattice-induction fl-morph_wf nc-p_wf bounded-lattice-hom_wf sq_stable__all sq_stable__equal squash_wf true_wf fl-morph-0 iff_weakening_equal fl_all-0 lattice-0_wf fl-morph-1 fl0_wf fl1_wf names_wf fl_all-join fl-morph-join face_lattice-1-join-irreducible fl_all-meet fl-morph-meet lattice-meet-eq-1 bdd-distributive-lattice-subtype-bdd-lattice fl_all-fl0 eq_int_wf assert_wf bnot_wf not_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot face-lattice-0-not-1 face_lattice-point-subtype f-subset-add-name fl_all-fl1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin sqequalHypSubstitution dependent_functionElimination hypothesisEquality hypothesis independent_functionElimination introduction extract_by_obid isectElimination because_Cache applyEquality sqequalRule instantiate lambdaEquality productEquality cumulativity universeEquality independent_isectElimination setElimination rename functionEquality equalityTransitivity equalitySymmetry imageElimination equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality baseClosed productElimination isect_memberEquality voidElimination voidEquality independent_pairFormation unionElimination inlFormation inrFormation intEquality impliesFunctionality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:Point(dM(I))].  \mforall{}[i:\mBbbN{}].  \mforall{}[v:Point(face\_lattice(I+i))].
    (((\mforall{}i.v)  =  1)  {}\mRightarrow{}  ((v)<(i/x)>  =  1))



Date html generated: 2017_10_05-AM-01_16_58
Last ObjectModification: 2017_07_28-AM-09_32_48

Theory : cubical!type!theory


Home Index