Nuprl Lemma : fl_all-0

I,J,i:Top.  ((∀i.0) 0)


Proof




Definitions occuring in Statement :  fl_all: (∀i.phi) face_lattice: face_lattice(I) lattice-0: 0 top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] fl_all: (∀i.phi) fl-all-hom: fl-all-hom(I;i) fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-0: 0 record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt empty-fset: {} nil: [] it: member: t ∈ T
Lemmas referenced :  face-lattice-property free-dist-lattice-with-constraints-property top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule hypothesis lemma_by_obid

Latex:
\mforall{}I,J,i:Top.    ((\mforall{}i.0)  \msim{}  0)



Date html generated: 2016_05_18-PM-00_17_54
Last ObjectModification: 2016_03_25-PM-04_04_34

Theory : cubical!type!theory


Home Index