Nuprl Lemma : face_lattice-induction
∀I:fset(ℕ)
  ∀[P:Point(face_lattice(I)) ⟶ ℙ]
    ((∀x:Point(face_lattice(I)). SqStable(P[x]))
    
⇒ P[0]
    
⇒ P[1]
    
⇒ (∀x,y:Point(face_lattice(I)).  (P[x] 
⇒ P[y] 
⇒ P[x ∨ y]))
    
⇒ (∀x:Point(face_lattice(I)). (P[x] 
⇒ (∀i:names(I). (P[(i=0) ∧ x] ∧ P[(i=1) ∧ x]))))
    
⇒ {∀x:Point(face_lattice(I)). P[x]})
Proof
Definitions occuring in Statement : 
fl1: (x=1)
, 
fl0: (x=0)
, 
face_lattice: face_lattice(I)
, 
names: names(I)
, 
lattice-0: 0
, 
lattice-1: 1
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
face_lattice: face_lattice(I)
, 
guard: {T}
, 
fl1: (x=1)
, 
fl0: (x=0)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
nat_wf, 
fset_wf, 
names-deq_wf, 
names_wf, 
face-lattice-induction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis
Latex:
\mforall{}I:fset(\mBbbN{})
    \mforall{}[P:Point(face\_lattice(I))  {}\mrightarrow{}  \mBbbP{}]
        ((\mforall{}x:Point(face\_lattice(I)).  SqStable(P[x]))
        {}\mRightarrow{}  P[0]
        {}\mRightarrow{}  P[1]
        {}\mRightarrow{}  (\mforall{}x,y:Point(face\_lattice(I)).    (P[x]  {}\mRightarrow{}  P[y]  {}\mRightarrow{}  P[x  \mvee{}  y]))
        {}\mRightarrow{}  (\mforall{}x:Point(face\_lattice(I)).  (P[x]  {}\mRightarrow{}  (\mforall{}i:names(I).  (P[(i=0)  \mwedge{}  x]  \mwedge{}  P[(i=1)  \mwedge{}  x]))))
        {}\mRightarrow{}  \{\mforall{}x:Point(face\_lattice(I)).  P[x]\})
Date html generated:
2016_05_18-PM-00_11_22
Last ObjectModification:
2016_03_26-PM-00_03_27
Theory : cubical!type!theory
Home
Index