Nuprl Lemma : face_lattice-induction

I:fset(ℕ)
  ∀[P:Point(face_lattice(I)) ⟶ ℙ]
    ((∀x:Point(face_lattice(I)). SqStable(P[x]))
     P[0]
     P[1]
     (∀x,y:Point(face_lattice(I)).  (P[x]  P[y]  P[x ∨ y]))
     (∀x:Point(face_lattice(I)). (P[x]  (∀i:names(I). (P[(i=0) ∧ x] ∧ P[(i=1) ∧ x]))))
     {∀x:Point(face_lattice(I)). P[x]})


Proof




Definitions occuring in Statement :  fl1: (x=1) fl0: (x=0) face_lattice: face_lattice(I) names: names(I) lattice-0: 0 lattice-1: 1 lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) fset: fset(T) nat: sq_stable: SqStable(P) uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] face_lattice: face_lattice(I) guard: {T} fl1: (x=1) fl0: (x=0) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_wf fset_wf names-deq_wf names_wf face-lattice-induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis

Latex:
\mforall{}I:fset(\mBbbN{})
    \mforall{}[P:Point(face\_lattice(I))  {}\mrightarrow{}  \mBbbP{}]
        ((\mforall{}x:Point(face\_lattice(I)).  SqStable(P[x]))
        {}\mRightarrow{}  P[0]
        {}\mRightarrow{}  P[1]
        {}\mRightarrow{}  (\mforall{}x,y:Point(face\_lattice(I)).    (P[x]  {}\mRightarrow{}  P[y]  {}\mRightarrow{}  P[x  \mvee{}  y]))
        {}\mRightarrow{}  (\mforall{}x:Point(face\_lattice(I)).  (P[x]  {}\mRightarrow{}  (\mforall{}i:names(I).  (P[(i=0)  \mwedge{}  x]  \mwedge{}  P[(i=1)  \mwedge{}  x]))))
        {}\mRightarrow{}  \{\mforall{}x:Point(face\_lattice(I)).  P[x]\})



Date html generated: 2016_05_18-PM-00_11_22
Last ObjectModification: 2016_03_26-PM-00_03_27

Theory : cubical!type!theory


Home Index