Nuprl Lemma : face-lattice-induction

T:Type. ∀eq:EqDecider(T).
  ∀[P:Point(face-lattice(T;eq)) ⟶ ℙ]
    ((∀x:Point(face-lattice(T;eq)). SqStable(P[x]))
     P[0]
     P[1]
     (∀x,y:Point(face-lattice(T;eq)).  (P[x]  P[y]  P[x ∨ y]))
     (∀x:Point(face-lattice(T;eq)). (P[x]  (∀i:T. (P[(i=0) ∧ x] ∧ P[(i=1) ∧ x]))))
     (∀x:Point(face-lattice(T;eq)). P[x]))


Proof




Definitions occuring in Statement :  face-lattice1: (x=1) face-lattice0: (x=0) face-lattice: face-lattice(T;eq) lattice-0: 0 lattice-1: 1 lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) deq: EqDecider(T) sq_stable: SqStable(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T implies:  Q top: Top subtype_rel: A ⊆B and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] prop: uimplies: supposing a bdd-distributive-lattice: BoundedDistributiveLattice face-lattice0: (x=0) face-lattice1: (x=1) guard: {T} lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind empty-fset: {} nil: [] it: lattice-0: 0 record-select: r.x face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt not: ¬A false: False squash: T bdd-lattice: BoundedLattice iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) uiff: uiff(P;Q) exists: x:A. B[x] lattice-fset-meet: /\(s) lattice-1: 1 fset-singleton: {x} cons: [a b]
Lemmas referenced :  face-lattice-basis fl-point-sq istype-void deq-fset_wf fset_wf union-deq_wf strong-subtype-deq-subtype fset-all_wf fset-contains-none_wf strong-subtype-set2 assert_wf fset-antichain_wf face-lattice-constraints_wf lattice-point_wf face-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf subtype_rel_self face-lattice0_wf face-lattice1_wf lattice-1_wf lattice-0_wf sq_stable_wf deq_wf istype-universe fset-image_wf lattice-fset-meet_wf decidable__equal-fl-point fset-induction fset-member_wf lattice-fset-join_wf fset-subtype squash_wf decidable_wf bdd-lattice_wf bdd-distributive-lattice-subtype-bdd-lattice fset-add-as-cons iff_weakening_equal reduce_cons_lemma member-fset-image-iff fset-subtype2
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberFormation_alt sqequalRule isect_memberEquality_alt voidElimination unionEquality applyEquality setEquality because_Cache productEquality lambdaEquality_alt unionIsType universeIsType independent_isectElimination hyp_replacement equalitySymmetry applyLambdaEquality instantiate cumulativity inhabitedIsType equalityTransitivity functionIsType universeEquality productIsType setElimination rename equalityIsType1 dependent_functionElimination independent_functionElimination productElimination unionElimination setIsType functionIsTypeImplies imageElimination functionEquality imageMemberEquality baseClosed

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).
    \mforall{}[P:Point(face-lattice(T;eq))  {}\mrightarrow{}  \mBbbP{}]
        ((\mforall{}x:Point(face-lattice(T;eq)).  SqStable(P[x]))
        {}\mRightarrow{}  P[0]
        {}\mRightarrow{}  P[1]
        {}\mRightarrow{}  (\mforall{}x,y:Point(face-lattice(T;eq)).    (P[x]  {}\mRightarrow{}  P[y]  {}\mRightarrow{}  P[x  \mvee{}  y]))
        {}\mRightarrow{}  (\mforall{}x:Point(face-lattice(T;eq)).  (P[x]  {}\mRightarrow{}  (\mforall{}i:T.  (P[(i=0)  \mwedge{}  x]  \mwedge{}  P[(i=1)  \mwedge{}  x]))))
        {}\mRightarrow{}  (\mforall{}x:Point(face-lattice(T;eq)).  P[x]))



Date html generated: 2019_10_31-AM-07_22_17
Last ObjectModification: 2018_11_08-PM-06_00_29

Theory : lattices


Home Index