Nuprl Lemma : face-lattice-induction
∀T:Type. ∀eq:EqDecider(T).
  ∀[P:Point(face-lattice(T;eq)) ⟶ ℙ]
    ((∀x:Point(face-lattice(T;eq)). SqStable(P[x]))
    
⇒ P[0]
    
⇒ P[1]
    
⇒ (∀x,y:Point(face-lattice(T;eq)).  (P[x] 
⇒ P[y] 
⇒ P[x ∨ y]))
    
⇒ (∀x:Point(face-lattice(T;eq)). (P[x] 
⇒ (∀i:T. (P[(i=0) ∧ x] ∧ P[(i=1) ∧ x]))))
    
⇒ (∀x:Point(face-lattice(T;eq)). P[x]))
Proof
Definitions occuring in Statement : 
face-lattice1: (x=1)
, 
face-lattice0: (x=0)
, 
face-lattice: face-lattice(T;eq)
, 
lattice-0: 0
, 
lattice-1: 1
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
face-lattice0: (x=0)
, 
face-lattice1: (x=1)
, 
guard: {T}
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
lattice-0: 0
, 
record-select: r.x
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
not: ¬A
, 
false: False
, 
squash: ↓T
, 
bdd-lattice: BoundedLattice
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
, 
lattice-fset-meet: /\(s)
, 
lattice-1: 1
, 
fset-singleton: {x}
, 
cons: [a / b]
Lemmas referenced : 
face-lattice-basis, 
fl-point-sq, 
istype-void, 
deq-fset_wf, 
fset_wf, 
union-deq_wf, 
strong-subtype-deq-subtype, 
fset-all_wf, 
fset-contains-none_wf, 
strong-subtype-set2, 
assert_wf, 
fset-antichain_wf, 
face-lattice-constraints_wf, 
lattice-point_wf, 
face-lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
subtype_rel_self, 
face-lattice0_wf, 
face-lattice1_wf, 
lattice-1_wf, 
lattice-0_wf, 
sq_stable_wf, 
deq_wf, 
istype-universe, 
fset-image_wf, 
lattice-fset-meet_wf, 
decidable__equal-fl-point, 
fset-induction, 
fset-member_wf, 
lattice-fset-join_wf, 
fset-subtype, 
squash_wf, 
decidable_wf, 
bdd-lattice_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
fset-add-as-cons, 
iff_weakening_equal, 
reduce_cons_lemma, 
member-fset-image-iff, 
fset-subtype2
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberFormation_alt, 
sqequalRule, 
isect_memberEquality_alt, 
voidElimination, 
unionEquality, 
applyEquality, 
setEquality, 
because_Cache, 
productEquality, 
lambdaEquality_alt, 
unionIsType, 
universeIsType, 
independent_isectElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
instantiate, 
cumulativity, 
inhabitedIsType, 
equalityTransitivity, 
functionIsType, 
universeEquality, 
productIsType, 
setElimination, 
rename, 
equalityIsType1, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
unionElimination, 
setIsType, 
functionIsTypeImplies, 
imageElimination, 
functionEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).
    \mforall{}[P:Point(face-lattice(T;eq))  {}\mrightarrow{}  \mBbbP{}]
        ((\mforall{}x:Point(face-lattice(T;eq)).  SqStable(P[x]))
        {}\mRightarrow{}  P[0]
        {}\mRightarrow{}  P[1]
        {}\mRightarrow{}  (\mforall{}x,y:Point(face-lattice(T;eq)).    (P[x]  {}\mRightarrow{}  P[y]  {}\mRightarrow{}  P[x  \mvee{}  y]))
        {}\mRightarrow{}  (\mforall{}x:Point(face-lattice(T;eq)).  (P[x]  {}\mRightarrow{}  (\mforall{}i:T.  (P[(i=0)  \mwedge{}  x]  \mwedge{}  P[(i=1)  \mwedge{}  x]))))
        {}\mRightarrow{}  (\mforall{}x:Point(face-lattice(T;eq)).  P[x]))
Date html generated:
2019_10_31-AM-07_22_17
Last ObjectModification:
2018_11_08-PM-06_00_29
Theory : lattices
Home
Index