Step
*
4
of Lemma
face_lattice-hom-fixes-sublattice2
1. I : fset(ℕ)
2. J : fset(ℕ)
3. J ⊆ I
4. f : Hom(face_lattice(I);face_lattice(J))
5. ∀i:names(J). (((f (i=0)) = (i=0) ∈ Point(face_lattice(J))) ∧ ((f (i=1)) = (i=1) ∈ Point(face_lattice(J))))
6. x : Point(face_lattice(J))
7. (f x) = x ∈ Point(face_lattice(J))
8. i : names(J)
⊢ (f (i=0) ∧ x) = (i=0) ∧ x ∈ Point(face_lattice(J))
BY
{ (RepeatFor 2 (DVar `f') THEN (InstHyp [⌜(i=0)⌝;⌜x⌝] 5⋅ THENA Auto) THEN D -1 THEN Symmetry) }
1
1. I : fset(ℕ)
2. J : fset(ℕ)
3. J ⊆ I
4. f : Point(face_lattice(I)) ⟶ Point(face_lattice(J))
5. ∀[a,b:Point(face_lattice(I))].
((f a ∧ f b = (f a ∧ b) ∈ Point(face_lattice(J))) ∧ (f a ∨ f b = (f a ∨ b) ∈ Point(face_lattice(J))))
6. ((f 0) = 0 ∈ Point(face_lattice(J))) ∧ ((f 1) = 1 ∈ Point(face_lattice(J)))
7. ∀i:names(J). (((f (i=0)) = (i=0) ∈ Point(face_lattice(J))) ∧ ((f (i=1)) = (i=1) ∈ Point(face_lattice(J))))
8. x : Point(face_lattice(J))
9. (f x) = x ∈ Point(face_lattice(J))
10. i : names(J)
11. f (i=0) ∧ f x = (f (i=0) ∧ x) ∈ Point(face_lattice(J))
12. f (i=0) ∨ f x = (f (i=0) ∨ x) ∈ Point(face_lattice(J))
⊢ (i=0) ∧ x = (f (i=0) ∧ x) ∈ Point(face_lattice(J))
Latex:
Latex:
1. I : fset(\mBbbN{})
2. J : fset(\mBbbN{})
3. J \msubseteq{} I
4. f : Hom(face\_lattice(I);face\_lattice(J))
5. \mforall{}i:names(J). (((f (i=0)) = (i=0)) \mwedge{} ((f (i=1)) = (i=1)))
6. x : Point(face\_lattice(J))
7. (f x) = x
8. i : names(J)
\mvdash{} (f (i=0) \mwedge{} x) = (i=0) \mwedge{} x
By
Latex:
(RepeatFor 2 (DVar `f') THEN (InstHyp [\mkleeneopen{}(i=0)\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}] 5\mcdot{} THENA Auto) THEN D -1 THEN Symmetry)
Home
Index