Nuprl Lemma : face_lattice-hom-fixes-sublattice2

[I,J:fset(ℕ)].
  ∀[f:Hom(face_lattice(I);face_lattice(J))]. ∀[x:Point(face_lattice(J))].
    (f x) x ∈ Point(face_lattice(J)) 
    supposing ∀i:names(J)
                (((f (i=0)) (i=0) ∈ Point(face_lattice(J))) ∧ ((f (i=1)) (i=1) ∈ Point(face_lattice(J)))) 
  supposing J ⊆ I


Proof




Definitions occuring in Statement :  fl1: (x=1) fl0: (x=0) face_lattice: face_lattice(I) names: names(I) bounded-lattice-hom: Hom(l1;l2) lattice-point: Point(l) f-subset: xs ⊆ ys fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) so_apply: x[s] implies:  Q prop: and: P ∧ Q cand: c∧ B guard: {T} bdd-distributive-lattice: BoundedDistributiveLattice nat: lattice-0: 0 record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt empty-fset: {} nil: [] it: lattice-1: 1 fset-singleton: {x} cons: [a b] squash: T true: True top: Top
Lemmas referenced :  face_lattice-induction equal_wf lattice-point_wf face_lattice_wf face_lattice-point-subtype sq_stable__equal names_wf all_wf fl0_wf names-subtype fl1_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf f-subset_wf int-deq_wf strong-subtype-deq-subtype nat_wf strong-subtype-set3 le_wf strong-subtype-self fset_wf squash_wf true_wf face_lattice-join-invariant face_lattice-meet-invariant
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality isectElimination sqequalRule lambdaEquality hypothesis applyEquality because_Cache setElimination rename independent_isectElimination independent_functionElimination lambdaFormation independent_pairFormation productEquality instantiate cumulativity universeEquality intEquality natural_numberEquality productElimination equalitySymmetry hyp_replacement imageElimination equalityTransitivity imageMemberEquality baseClosed isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].
    \mforall{}[f:Hom(face\_lattice(I);face\_lattice(J))].  \mforall{}[x:Point(face\_lattice(J))].
        (f  x)  =  x  supposing  \mforall{}i:names(J).  (((f  (i=0))  =  (i=0))  \mwedge{}  ((f  (i=1))  =  (i=1))) 
    supposing  J  \msubseteq{}  I



Date html generated: 2017_10_05-AM-01_10_45
Last ObjectModification: 2017_03_02-PM-10_27_05

Theory : cubical!type!theory


Home Index