Nuprl Lemma : face_lattice-hom-fixes-sublattice2
∀[I,J:fset(ℕ)].
  ∀[f:Hom(face_lattice(I);face_lattice(J))]. ∀[x:Point(face_lattice(J))].
    (f x) = x ∈ Point(face_lattice(J)) 
    supposing ∀i:names(J)
                (((f (i=0)) = (i=0) ∈ Point(face_lattice(J))) ∧ ((f (i=1)) = (i=1) ∈ Point(face_lattice(J)))) 
  supposing J ⊆ I
Proof
Definitions occuring in Statement : 
fl1: (x=1)
, 
fl0: (x=0)
, 
face_lattice: face_lattice(I)
, 
names: names(I)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-point: Point(l)
, 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
guard: {T}
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
nat: ℕ
, 
lattice-0: 0
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
lattice-1: 1
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
squash: ↓T
, 
true: True
, 
top: Top
Lemmas referenced : 
face_lattice-induction, 
equal_wf, 
lattice-point_wf, 
face_lattice_wf, 
face_lattice-point-subtype, 
sq_stable__equal, 
names_wf, 
all_wf, 
fl0_wf, 
names-subtype, 
fl1_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf, 
f-subset_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
nat_wf, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
fset_wf, 
squash_wf, 
true_wf, 
face_lattice-join-invariant, 
face_lattice-meet-invariant
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
independent_functionElimination, 
lambdaFormation, 
independent_pairFormation, 
productEquality, 
instantiate, 
cumulativity, 
universeEquality, 
intEquality, 
natural_numberEquality, 
productElimination, 
equalitySymmetry, 
hyp_replacement, 
imageElimination, 
equalityTransitivity, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[I,J:fset(\mBbbN{})].
    \mforall{}[f:Hom(face\_lattice(I);face\_lattice(J))].  \mforall{}[x:Point(face\_lattice(J))].
        (f  x)  =  x  supposing  \mforall{}i:names(J).  (((f  (i=0))  =  (i=0))  \mwedge{}  ((f  (i=1))  =  (i=1))) 
    supposing  J  \msubseteq{}  I
Date html generated:
2017_10_05-AM-01_10_45
Last ObjectModification:
2017_03_02-PM-10_27_05
Theory : cubical!type!theory
Home
Index