Nuprl Lemma : face_lattice-join-invariant

[v,y,I,J:Top].  (v ∨ v ∨ y)


Proof




Definitions occuring in Statement :  face_lattice: face_lattice(I) lattice-join: a ∨ b uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  lattice-join: a ∨ b record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt fset-constrained-ac-lub: lub(P;ac1;ac2) fset-ac-lub: fset-ac-lub(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind fset-union: x ⋃ y l-union: as ⋃ bs union-deq: union-deq(A;B;a;b) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid hypothesis because_Cache isect_memberFormation sqequalAxiom sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality

Latex:
\mforall{}[v,y,I,J:Top].    (v  \mvee{}  y  \msim{}  v  \mvee{}  y)



Date html generated: 2017_02_21-AM-10_32_21
Last ObjectModification: 2017_02_03-PM-08_41_35

Theory : cubical!type!theory


Home Index