Step
*
of Lemma
fill-type-down-0
No Annotations
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[u:{Gamma ⊢ _:(A)[1(𝕀)]}].
((app(fill-type-down(Gamma;A;cA); (u)p))[0(𝕀)] = app(rev-transport-fun(Gamma;A;cA); u) ∈ {Gamma ⊢ _:(A)[0(𝕀)]})
BY
{ ((InstLemma `fill-type-up-1` [] THEN ParallelLast')
THEN Intro
THEN (InstHyp [⌜(A)-⌝] (-2)⋅ THENA Auto)
THEN Thin (-3)
THEN Intro
THEN (InstLemmaIJ `csm-adjoin_wf` [⌜Gamma⌝;⌜Gamma.𝕀⌝;𝕀;⌜p⌝;⌜1-(q)⌝]⋅
THENA (Auto THEN RWO "csm-interval-type" 0 THEN Auto)
)
THEN (Assert (cA)(p;1-(q)) ∈ Gamma.𝕀 ⊢ CompOp((A)-) BY
Auto)
THEN (InstHyp [⌜(cA)(p;1-(q))⌝] (-4)⋅ THENA Auto)
THEN Thin (-5)
THEN ParallelLast
THEN (Assert {Gamma ⊢ _:(A)[0(𝕀)]} = {Gamma ⊢ _:((A)-)[1(𝕀)]} ∈ 𝕌{[i' | j']} BY
(EqCDA THEN Auto))) }
1
1. Gamma : CubicalSet{j}
2. A : {Gamma.𝕀 ⊢ _}
3. cA : Gamma.𝕀 ⊢ CompOp(A)
4. (p;1-(q)) ∈ cube_set_map{[i | [i | j]]:l}(Gamma.𝕀; Gamma.𝕀)
5. (cA)(p;1-(q)) ∈ Gamma.𝕀 ⊢ CompOp((A)-)
6. ∀[u:{Gamma ⊢ _:((A)-)[0(𝕀)]}]
((app(fill-type-up(Gamma;(A)-;(cA)(p;1-(q))); (u)p))[1(𝕀)]
= app(transport-fun(Gamma;(A)-;(cA)(p;1-(q))); u)
∈ {Gamma ⊢ _:((A)-)[1(𝕀)]})
7. u : {Gamma ⊢ _:(A)[1(𝕀)]}
8. (app(fill-type-up(Gamma;(A)-;(cA)(p;1-(q))); (u)p))[1(𝕀)]
= app(transport-fun(Gamma;(A)-;(cA)(p;1-(q))); u)
∈ {Gamma ⊢ _:((A)-)[1(𝕀)]}
9. {Gamma ⊢ _:(A)[0(𝕀)]} = {Gamma ⊢ _:((A)-)[1(𝕀)]} ∈ 𝕌{[i' | j']}
⊢ (app(fill-type-down(Gamma;A;cA); (u)p))[0(𝕀)] = app(rev-transport-fun(Gamma;A;cA); u) ∈ {Gamma ⊢ _:(A)[0(𝕀)]}
Latex:
Latex:
No Annotations
\mforall{}[Gamma:j\mvdash{}]. \mforall{}[A:\{Gamma.\mBbbI{} \mvdash{} \_\}]. \mforall{}[cA:Gamma.\mBbbI{} \mvdash{} CompOp(A)]. \mforall{}[u:\{Gamma \mvdash{} \_:(A)[1(\mBbbI{})]\}].
((app(fill-type-down(Gamma;A;cA); (u)p))[0(\mBbbI{})] = app(rev-transport-fun(Gamma;A;cA); u))
By
Latex:
((InstLemma `fill-type-up-1` [] THEN ParallelLast')
THEN Intro
THEN (InstHyp [\mkleeneopen{}(A)-\mkleeneclose{}] (-2)\mcdot{} THENA Auto)
THEN Thin (-3)
THEN Intro
THEN (InstLemmaIJ `csm-adjoin\_wf` [\mkleeneopen{}Gamma\mkleeneclose{};\mkleeneopen{}Gamma.\mBbbI{}\mkleeneclose{};\mBbbI{};\mkleeneopen{}p\mkleeneclose{};\mkleeneopen{}1-(q)\mkleeneclose{}]\mcdot{}
THENA (Auto THEN RWO "csm-interval-type" 0 THEN Auto)
)
THEN (Assert (cA)(p;1-(q)) \mmember{} Gamma.\mBbbI{} \mvdash{} CompOp((A)-) BY
Auto)
THEN (InstHyp [\mkleeneopen{}(cA)(p;1-(q))\mkleeneclose{}] (-4)\mcdot{} THENA Auto)
THEN Thin (-5)
THEN ParallelLast
THEN (Assert \{Gamma \mvdash{} \_:(A)[0(\mBbbI{})]\} = \{Gamma \mvdash{} \_:((A)-)[1(\mBbbI{})]\} BY
(EqCDA THEN Auto)))
Home
Index