Nuprl Lemma : fill-type-down-0
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[u:{Gamma ⊢ _:(A)[1(𝕀)]}].
  ((app(fill-type-down(Gamma;A;cA); (u)p))[0(𝕀)] = app(rev-transport-fun(Gamma;A;cA); u) ∈ {Gamma ⊢ _:(A)[0(𝕀)]})
Proof
Definitions occuring in Statement : 
fill-type-down: fill-type-down(Gamma;A;cA)
, 
rev-transport-fun: rev-transport-fun(Gamma;A;cA)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
cubical-app: app(w; u)
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
, 
rev-type-line: (A)-
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
fill-type-down: fill-type-down(Gamma;A;cA)
, 
all: ∀x:A. B[x]
, 
cubical-type: {X ⊢ _}
, 
interval-rev: 1-(r)
, 
csm-adjoin: (s;u)
, 
interval-1: 1(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap-term: (t)s
, 
interval-0: 0(𝕀)
, 
csm-id: 1(X)
, 
csm-ap: (s)x
, 
cubical-term-at: u(a)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
rev-transport-fun: rev-transport-fun(Gamma;A;cA)
Lemmas referenced : 
fill-type-up-1, 
rev-type-line_wf, 
csm-adjoin_wf, 
cubical_set_cumulativity-i-j, 
cube-context-adjoin_wf, 
interval-type_wf, 
cc-fst_wf, 
csm-interval-type, 
interval-rev_wf, 
cc-snd_wf, 
csm-composition_wf, 
subtype_rel_self, 
composition-op_wf, 
cubical-type-cumulativity2, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-ap-type_wf, 
csm-id-adjoin_wf-interval-0, 
rev-type-line-0, 
csm-id-adjoin_wf-interval-1, 
cubical-term_wf, 
squash_wf, 
true_wf, 
cubical-type_wf, 
rev-type-line-1, 
cubical_set_wf, 
csm-cubical-app, 
csm_id_adjoin_fst_term_lemma, 
dma-neg-dM0
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
applyEquality, 
sqequalRule, 
because_Cache, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lambdaEquality_alt, 
imageElimination, 
universeIsType, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination, 
setElimination, 
rename, 
productElimination, 
hyp_replacement
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].  \mforall{}[u:\{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})]\}].
    ((app(fill-type-down(Gamma;A;cA);  (u)p))[0(\mBbbI{})]  =  app(rev-transport-fun(Gamma;A;cA);  u))
Date html generated:
2020_05_20-PM-04_55_52
Last ObjectModification:
2020_04_12-AM-08_42_19
Theory : cubical!type!theory
Home
Index