Step * of Lemma fl-all-hom_wf1

[I:fset(ℕ)]. ∀[i:ℕ].
  (fl-all-hom(I;i) ∈ {g:Hom(face_lattice(I+i);face_lattice(I))| 
                      (∀j:names(I)
                         ((¬(j i ∈ ℤ))
                          (((g (j=0)) (j=0) ∈ Point(face_lattice(I)))
                            ∧ ((g (j=1)) (j=1) ∈ Point(face_lattice(I))))))
                      ∧ ((g (i=0)) 0 ∈ Point(face_lattice(I)))
                      ∧ ((g (i=1)) 0 ∈ Point(face_lattice(I)))} )
BY
(Auto THEN Unfold `fl-all-hom` THEN DoSubsume) }

1
1. fset(ℕ)
2. : ℕ
⊢ fl-lift(names(I+i);NamesDeq;face_lattice(I);face_lattice-deq();λx.if (x =z i) then else (x=0) fi x.if (x =z i)
                                                                                                         then 0
                                                                                                         else (x=1)
                                                                                                         fi )
  ∈ {g:Hom(face-lattice(names(I+i);NamesDeq);face_lattice(I))| 
     ∀x:names(I+i)
       (((g (x=0)) ((λx.if (x =z i) then else (x=0) fi x) ∈ Point(face_lattice(I)))
       ∧ ((g (x=1)) ((λx.if (x =z i) then else (x=1) fi x) ∈ Point(face_lattice(I))))} 

2
1. fset(ℕ)
2. : ℕ
3. fl-lift(names(I+i);NamesDeq;face_lattice(I);face_lattice-deq();λx.if (x =z i) then else (x=0) fi x.if (x =z i)
                                                                                                          then 0
                                                                                                          else (x=1)
                                                                                                          fi )
fl-lift(names(I+i);NamesDeq;face_lattice(I);face_lattice-deq();λx.if (x =z i) then else (x=0) fi x.if (x =z i)
                                                                                                         then 0
                                                                                                         else (x=1)
                                                                                                         fi )
∈ {g:Hom(face-lattice(names(I+i);NamesDeq);face_lattice(I))| 
   ∀x:names(I+i)
     (((g (x=0)) ((λx.if (x =z i) then else (x=0) fi x) ∈ Point(face_lattice(I)))
     ∧ ((g (x=1)) ((λx.if (x =z i) then else (x=1) fi x) ∈ Point(face_lattice(I))))} 
⊢ {g:Hom(face-lattice(names(I+i);NamesDeq);face_lattice(I))| 
   ∀x:names(I+i)
     (((g (x=0)) ((λx.if (x =z i) then else (x=0) fi x) ∈ Point(face_lattice(I)))
     ∧ ((g (x=1)) ((λx.if (x =z i) then else (x=1) fi x) ∈ Point(face_lattice(I))))} 
    ⊆{g:Hom(face_lattice(I+i);face_lattice(I))| 
        (∀j:names(I)
           ((¬(j i ∈ ℤ))
            (((g (j=0)) (j=0) ∈ Point(face_lattice(I))) ∧ ((g (j=1)) (j=1) ∈ Point(face_lattice(I))))))
        ∧ ((g (i=0)) 0 ∈ Point(face_lattice(I)))
        ∧ ((g (i=1)) 0 ∈ Point(face_lattice(I)))} 


Latex:


Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].
    (fl-all-hom(I;i)  \mmember{}  \{g:Hom(face\_lattice(I+i);face\_lattice(I))| 
                                            (\mforall{}j:names(I).  ((\mneg{}(j  =  i))  {}\mRightarrow{}  (((g  (j=0))  =  (j=0))  \mwedge{}  ((g  (j=1))  =  (j=1)))))
                                            \mwedge{}  ((g  (i=0))  =  0)
                                            \mwedge{}  ((g  (i=1))  =  0)\}  )


By


Latex:
(Auto  THEN  Unfold  `fl-all-hom`  0  THEN  DoSubsume)




Home Index