Step
*
1
of Lemma
fl-all-hom_wf1
1. I : fset(ℕ)
2. i : ℕ
⊢ fl-lift(names(I+i);NamesDeq;face_lattice(I);face_lattice-deq();λx.if (x =z i) then 0 else (x=0) fi ;λx.if (x =z i)
then 0
else (x=1)
fi )
∈ {g:Hom(face-lattice(names(I+i);NamesDeq);face_lattice(I))|
∀x:names(I+i)
(((g (x=0)) = ((λx.if (x =z i) then 0 else (x=0) fi ) x) ∈ Point(face_lattice(I)))
∧ ((g (x=1)) = ((λx.if (x =z i) then 0 else (x=1) fi ) x) ∈ Point(face_lattice(I))))}
BY
{ (Auto
THEN Try ((FLemma `not-added-name` [-2] THEN Auto))
THEN (BoolCase ⌜(x =z i)⌝⋅ THENA Auto)
THEN Try ((FLemma `not-added-name` [-1] THEN Auto))
THEN Auto) }
Latex:
Latex:
1. I : fset(\mBbbN{})
2. i : \mBbbN{}
\mvdash{} fl-lift(names(I+i);NamesDeq;face\_lattice(I);face\_lattice-deq();
\mlambda{}x.if (x =\msubz{} i) then 0 else (x=0) fi ;\mlambda{}x.if (x =\msubz{} i) then 0 else (x=1) fi )
\mmember{} \{g:Hom(face-lattice(names(I+i);NamesDeq);face\_lattice(I))|
\mforall{}x:names(I+i)
(((g (x=0)) = ((\mlambda{}x.if (x =\msubz{} i) then 0 else (x=0) fi ) x))
\mwedge{} ((g (x=1)) = ((\mlambda{}x.if (x =\msubz{} i) then 0 else (x=1) fi ) x)))\}
By
Latex:
(Auto
THEN Try ((FLemma `not-added-name` [-2] THEN Auto))
THEN (BoolCase \mkleeneopen{}(x =\msubz{} i)\mkleeneclose{}\mcdot{} THENA Auto)
THEN Try ((FLemma `not-added-name` [-1] THEN Auto))
THEN Auto)
Home
Index