Step
*
1
of Lemma
fl_all-fl1
1. I : fset(ℕ)
2. i : ℕ
3. x : names(I+i)
4. fl-all-hom(I;i) = fl-all-hom(I;i) ∈ Hom(face_lattice(I+i);face_lattice(I))
5. (∀j:names(I)
((¬(j = i ∈ ℤ))
⇒ (((fl-all-hom(I;i) (j=0)) = (j=0) ∈ Point(face_lattice(I)))
∧ ((fl-all-hom(I;i) (j=1)) = (j=1) ∈ Point(face_lattice(I))))))
∧ ((fl-all-hom(I;i) (i=0)) = 0 ∈ Point(face_lattice(I)))
∧ ((fl-all-hom(I;i) (i=1)) = 0 ∈ Point(face_lattice(I)))
⊢ (fl-all-hom(I;i) (x=1)) = if (x =z i) then 0 else (x=1) fi ∈ Point(face_lattice(I))
BY
{ (BoolCase ⌜(x =z i)⌝⋅ THENA Auto) }
1
1. I : fset(ℕ)
2. i : ℕ
3. x : names(I+i)
4. fl-all-hom(I;i) = fl-all-hom(I;i) ∈ Hom(face_lattice(I+i);face_lattice(I))
5. (∀j:names(I)
((¬(j = i ∈ ℤ))
⇒ (((fl-all-hom(I;i) (j=0)) = (j=0) ∈ Point(face_lattice(I)))
∧ ((fl-all-hom(I;i) (j=1)) = (j=1) ∈ Point(face_lattice(I))))))
∧ ((fl-all-hom(I;i) (i=0)) = 0 ∈ Point(face_lattice(I)))
∧ ((fl-all-hom(I;i) (i=1)) = 0 ∈ Point(face_lattice(I)))
6. x = i ∈ ℤ
⊢ (fl-all-hom(I;i) (x=1)) = 0 ∈ Point(face_lattice(I))
2
1. I : fset(ℕ)
2. i : ℕ
3. x : names(I+i)
4. x ≠ i
5. fl-all-hom(I;i) = fl-all-hom(I;i) ∈ Hom(face_lattice(I+i);face_lattice(I))
6. (∀j:names(I)
((¬(j = i ∈ ℤ))
⇒ (((fl-all-hom(I;i) (j=0)) = (j=0) ∈ Point(face_lattice(I)))
∧ ((fl-all-hom(I;i) (j=1)) = (j=1) ∈ Point(face_lattice(I))))))
∧ ((fl-all-hom(I;i) (i=0)) = 0 ∈ Point(face_lattice(I)))
∧ ((fl-all-hom(I;i) (i=1)) = 0 ∈ Point(face_lattice(I)))
⊢ (fl-all-hom(I;i) (x=1)) = (x=1) ∈ Point(face_lattice(I))
Latex:
Latex:
1. I : fset(\mBbbN{})
2. i : \mBbbN{}
3. x : names(I+i)
4. fl-all-hom(I;i) = fl-all-hom(I;i)
5. (\mforall{}j:names(I)
((\mneg{}(j = i)) {}\mRightarrow{} (((fl-all-hom(I;i) (j=0)) = (j=0)) \mwedge{} ((fl-all-hom(I;i) (j=1)) = (j=1)))))
\mwedge{} ((fl-all-hom(I;i) (i=0)) = 0)
\mwedge{} ((fl-all-hom(I;i) (i=1)) = 0)
\mvdash{} (fl-all-hom(I;i) (x=1)) = if (x =\msubz{} i) then 0 else (x=1) fi
By
Latex:
(BoolCase \mkleeneopen{}(x =\msubz{} i)\mkleeneclose{}\mcdot{} THENA Auto)
Home
Index