Step
*
of Lemma
fst-transprt-sigma
No Annotations
ā[X:jā¢]. ā[A:{X.š ā¢ _}]. ā[B:{X.š.A ā¢ _}]. ā[cA:X.š +ā¢ Compositon(A)]. ā[cB:X.š.A +ā¢ Compositon(B)].
ā[pr:{X ā¢ _:(Ī£ A B)[0(š)]}].
(transprt(X;sigma_comp(cA;cB);pr).1 = transprt(X;cA;pr.1) ā {X ā¢ _:(A)[1(š)]})
BY
{ (Intros
THEN (Subst' transprt(X;sigma_comp(cA;cB);pr).1 ~ (fill (cA)1(X.š) [0(š½) ā¢ā discr(ā
).1] pr.1)[1(š)] 0
THENA (RepUR ``transprt comp_term sigma_comp let cubical-pair cubical-fst`` 0
THEN RepUR ``fill_term csm-ap-term`` 0
THEN CsmUnfoldingComp)
)
THEN (((Assert (cA)1(X.š) ā X.š +ā¢ Compositon(A) BY
(InferEqualTypeGen THENL [(EqCDA THEN Auto); Auto]))
THEN Assert āpr.1 ā {X ā¢ _:(A)[0(š)][0(š½) |ā¶ discr(ā
).1[0]]}āā
)
THENM ((InstLemma `fill_term_1` [āXā;ā0(š½)ā;āAā]ā
THENA Auto)
THEN (RWO "csm-face-0" (-1) THENA Auto)
THEN (InstHyp [ādiscr(ā
).1ā;āpr.1ā;ā(cA)1(X.š)ā] (-1)ā
THENA Auto))
)) }
1
.....assertion.....
1. X : CubicalSet{j}
2. A : {X.š ā¢ _}
3. B : {X.š.A ā¢ _}
4. cA : X.š +ā¢ Compositon(A)
5. cB : X.š.A +ā¢ Compositon(B)
6. pr : {X ā¢ _:(Ī£ A B)[0(š)]}
7. (cA)1(X.š) ā X.š +ā¢ Compositon(A)
ā¢ pr.1 ā {X ā¢ _:(A)[0(š)][0(š½) |ā¶ discr(ā
).1[0]]}
2
1. X : CubicalSet{j}
2. A : {X.š ā¢ _}
3. B : {X.š.A ā¢ _}
4. cA : X.š +ā¢ Compositon(A)
5. cB : X.š.A +ā¢ Compositon(B)
6. pr : {X ā¢ _:(Ī£ A B)[0(š)]}
7. (cA)1(X.š) ā X.š +ā¢ Compositon(A)
8. pr.1 ā {X ā¢ _:(A)[0(š)][0(š½) |ā¶ discr(ā
).1[0]]}
9. ā[u:{X.š, 0(š½) ā¢ _:A}]. ā[a0:{X ā¢ _:(A)[0(š)][0(š½) |ā¶ u[0]]}]. ā[cT:X.š ā¢ Compositon(A)].
((fill cT [0(š½) ā¢ā u] a0)[1(š)] = comp cT [0(š½) ā¢ā u] a0 ā {X ā¢ _:(A)[1(š)]})
10. (fill (cA)1(X.š) [0(š½) ā¢ā discr(ā
).1] pr.1)[1(š)] = comp (cA)1(X.š) [0(š½) ā¢ā discr(ā
).1] pr.1 ā {X ā¢ _:(A)[1(š)]}
ā¢ (fill (cA)1(X.š) [0(š½) ā¢ā discr(ā
).1] pr.1)[1(š)] = transprt(X;cA;pr.1) ā {X ā¢ _:(A)[1(š)]}
Latex:
Latex:
No Annotations
\mforall{}[X:j\mvdash{}]. \mforall{}[A:\{X.\mBbbI{} \mvdash{} \_\}]. \mforall{}[B:\{X.\mBbbI{}.A \mvdash{} \_\}]. \mforall{}[cA:X.\mBbbI{} +\mvdash{} Compositon(A)]. \mforall{}[cB:X.\mBbbI{}.A +\mvdash{} Compositon(B)].
\mforall{}[pr:\{X \mvdash{} \_:(\mSigma{} A B)[0(\mBbbI{})]\}].
(transprt(X;sigma\_comp(cA;cB);pr).1 = transprt(X;cA;pr.1))
By
Latex:
(Intros
THEN (Subst' transprt(X;sigma\_comp(cA;cB);pr).1
\msim{} (fill (cA)1(X.\mBbbI{}) [0(\mBbbF{}) \mvdash{}\mrightarrow{} discr(\mcdot{}).1] pr.1)[1(\mBbbI{})] 0
THENA (RepUR ``transprt comp\_term sigma\_comp let cubical-pair cubical-fst`` 0
THEN RepUR ``fill\_term csm-ap-term`` 0
THEN CsmUnfoldingComp)
)
THEN (((Assert (cA)1(X.\mBbbI{}) \mmember{} X.\mBbbI{} +\mvdash{} Compositon(A) BY
(InferEqualTypeGen THENL [(EqCDA THEN Auto); Auto]))
THEN Assert \mkleeneopen{}pr.1 \mmember{} \{X \mvdash{} \_:(A)[0(\mBbbI{})][0(\mBbbF{}) |{}\mrightarrow{} discr(\mcdot{}).1[0]]\}\mkleeneclose{}\mcdot{}
)
THENM ((InstLemma `fill\_term\_1` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}0(\mBbbF{})\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (RWO "csm-face-0" (-1) THENA Auto)
THEN (InstHyp [\mkleeneopen{}discr(\mcdot{}).1\mkleeneclose{};\mkleeneopen{}pr.1\mkleeneclose{};\mkleeneopen{}(cA)1(X.\mBbbI{})\mkleeneclose{}] (-1)\mcdot{} THENA Auto))
))
Home
Index