Nuprl Lemma : fst-transprt-sigma
∀[X:j⊢]. ∀[A:{X.𝕀 ⊢ _}]. ∀[B:{X.𝕀.A ⊢ _}]. ∀[cA:X.𝕀 +⊢ Compositon(A)]. ∀[cB:X.𝕀.A +⊢ Compositon(B)].
∀[pr:{X ⊢ _:(Σ A B)[0(𝕀)]}].
  (transprt(X;sigma_comp(cA;cB);pr).1 = transprt(X;cA;pr.1) ∈ {X ⊢ _:(A)[1(𝕀)]})
Proof
Definitions occuring in Statement : 
sigma_comp: sigma_comp(cA;cB)
, 
transprt: transprt(G;cA;a0)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
cubical-fst: p.1
, 
cubical-sigma: Σ A B
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
cubical-fst: p.1
, 
sigma_comp: sigma_comp(cA;cB)
, 
transprt: transprt(G;cA;a0)
, 
cubical-pair: cubical-pair(u;v)
, 
comp_term: comp cA [phi ⊢→ u] a0
, 
let: let, 
pi1: fst(t)
, 
fill_term: fill cA [phi ⊢→ u] a0
, 
csm-ap-term: (t)s
, 
csm-comp-structure: (cA)tau
, 
interval-1: 1(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap: (s)x
, 
face-0: 0(𝔽)
, 
interval-type: 𝕀
, 
csm-id: 1(X)
, 
csm-comp: G o F
, 
csm-adjoin: (s;u)
, 
compose: f o g
, 
constant-cubical-type: (X)
, 
member: t ∈ T
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
true: True
, 
uimplies: b supposing a
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
all: ∀x:A. B[x]
, 
cubical-type: {X ⊢ _}
, 
cc-snd: q
, 
interval-0: 0(𝕀)
, 
csm-ap-type: (AF)s
, 
cc-fst: p
, 
respects-equality: respects-equality(S;T)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
composition-structure_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-ap-id-type, 
csm-comp-structure_wf, 
csm-id_wf, 
fill_term_1, 
face-0_wf, 
csm-face-0, 
empty-context-subset-lemma3, 
composition-structure-cumulativity, 
subtype_rel-equal, 
csm-ap-type_wf, 
istype-cubical-term, 
cubical_set_cumulativity-i-j, 
cubical-sigma_wf, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf, 
csm-cubical-sigma, 
cubical-term-eqcd, 
member_wf, 
cubical-fst_wf, 
csm-adjoin_wf, 
csm-comp_wf, 
cc-fst_wf, 
cc-snd_wf, 
context-subset_wf, 
thin-context-subset, 
respects-equality-context-subset-term, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
csm-id-adjoin_wf-interval-1, 
equals-transprt, 
subtype_rel_self, 
transprt_wf, 
csm-comp-structure-id, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
applyEquality, 
thin, 
instantiate, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
universeIsType, 
Error :memTop, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
applyLambdaEquality, 
cumulativity, 
universeEquality, 
setElimination, 
rename, 
productElimination, 
equalityIstype, 
independent_functionElimination
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[B:\{X.\mBbbI{}.A  \mvdash{}  \_\}].  \mforall{}[cA:X.\mBbbI{}  +\mvdash{}  Compositon(A)].  \mforall{}[cB:X.\mBbbI{}.A  +\mvdash{}  Compositon(B)].
\mforall{}[pr:\{X  \mvdash{}  \_:(\mSigma{}  A  B)[0(\mBbbI{})]\}].
    (transprt(X;sigma\_comp(cA;cB);pr).1  =  transprt(X;cA;pr.1))
Date html generated:
2020_05_20-PM-05_00_40
Last ObjectModification:
2020_04_18-PM-00_21_35
Theory : cubical!type!theory
Home
Index