Nuprl Lemma : fst-transprt-sigma

[X:j⊢]. ∀[A:{X.𝕀 ⊢ _}]. ∀[B:{X.𝕀.A ⊢ _}]. ∀[cA:X.𝕀 +⊢ Compositon(A)]. ∀[cB:X.𝕀.A +⊢ Compositon(B)].
[pr:{X ⊢ _:(Σ B)[0(𝕀)]}].
  (transprt(X;sigma_comp(cA;cB);pr).1 transprt(X;cA;pr.1) ∈ {X ⊢ _:(A)[1(𝕀)]})


Proof




Definitions occuring in Statement :  sigma_comp: sigma_comp(cA;cB) transprt: transprt(G;cA;a0) composition-structure: Gamma ⊢ Compositon(A) interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-fst: p.1 cubical-sigma: Σ B csm-id-adjoin: [u] cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] cubical-fst: p.1 sigma_comp: sigma_comp(cA;cB) transprt: transprt(G;cA;a0) cubical-pair: cubical-pair(u;v) comp_term: comp cA [phi ⊢→ u] a0 let: let pi1: fst(t) fill_term: fill cA [phi ⊢→ u] a0 csm-ap-term: (t)s csm-comp-structure: (cA)tau interval-1: 1(𝕀) csm-id-adjoin: [u] csm-ap: (s)x face-0: 0(𝔽) interval-type: 𝕀 csm-id: 1(X) csm-comp: F csm-adjoin: (s;u) compose: g constant-cubical-type: (X) member: t ∈ T squash: T subtype_rel: A ⊆B true: True uimplies: supposing a constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} all: x:A. B[x] cubical-type: {X ⊢ _} cc-snd: q interval-0: 0(𝕀) csm-ap-type: (AF)s cc-fst: p respects-equality: respects-equality(S;T) implies:  Q prop: composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  composition-structure_wf cube-context-adjoin_wf interval-type_wf csm-ap-id-type csm-comp-structure_wf csm-id_wf fill_term_1 face-0_wf csm-face-0 empty-context-subset-lemma3 composition-structure-cumulativity subtype_rel-equal csm-ap-type_wf istype-cubical-term cubical_set_cumulativity-i-j cubical-sigma_wf csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 cubical-type_wf cubical_set_wf csm-cubical-sigma cubical-term-eqcd member_wf cubical-fst_wf csm-adjoin_wf csm-comp_wf cc-fst_wf cc-snd_wf context-subset_wf thin-context-subset respects-equality-context-subset-term equal_wf squash_wf true_wf istype-universe csm-id-adjoin_wf-interval-1 equals-transprt subtype_rel_self transprt_wf csm-comp-structure-id iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut applyEquality thin instantiate lambdaEquality_alt sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination because_Cache hypothesis hypothesisEquality natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry hyp_replacement universeIsType Error :memTop,  independent_isectElimination dependent_set_memberEquality_alt dependent_functionElimination applyLambdaEquality cumulativity universeEquality setElimination rename productElimination equalityIstype independent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[B:\{X.\mBbbI{}.A  \mvdash{}  \_\}].  \mforall{}[cA:X.\mBbbI{}  +\mvdash{}  Compositon(A)].  \mforall{}[cB:X.\mBbbI{}.A  +\mvdash{}  Compositon(B)].
\mforall{}[pr:\{X  \mvdash{}  \_:(\mSigma{}  A  B)[0(\mBbbI{})]\}].
    (transprt(X;sigma\_comp(cA;cB);pr).1  =  transprt(X;cA;pr.1))



Date html generated: 2020_05_20-PM-05_00_40
Last ObjectModification: 2020_04_18-PM-00_21_35

Theory : cubical!type!theory


Home Index