Nuprl Lemma : equals-transprt

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 +⊢ Compositon(A)]. ∀[a:{Gamma ⊢ _:(A)[0(𝕀)]}]. ∀[xx:Top].
  (comp cA [0(𝔽) ⊢→ xx] transprt(Gamma;cA;a) ∈ {Gamma ⊢ _:(A)[1(𝕀)]})


Proof




Definitions occuring in Statement :  transprt: transprt(G;cA;a0) comp_term: comp cA [phi ⊢→ u] a0 composition-structure: Gamma ⊢ Compositon(A) face-0: 0(𝔽) interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] top: Top equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T transprt: transprt(G;cA;a0) subtype_rel: A ⊆B squash: T prop: csm-id-adjoin: [u] csm-id: 1(X) guard: {T} composition-structure: Gamma ⊢ Compositon(A) all: x:A. B[x] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} uimplies: supposing a true: True
Lemmas referenced :  istype-top istype-cubical-term cubical_set_cumulativity-i-j csm-ap-type_wf cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 composition-structure_wf cubical-type_wf cubical_set_wf comp_term_wf squash_wf true_wf constrained-cubical-term_wf csm-ap-term_wf context-subset_wf thin-context-subset-adjoin composition-function_wf face-type_wf face-0_wf composition-function-cumulativity empty-context-subset-lemma3 subset-cubical-term context-subset-is-subset empty-context-subset-lemma4 csm-id-adjoin_wf-interval-1 empty-context-subset-lemma2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut equalitySymmetry hypothesis extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality_alt isectElimination thin hypothesisEquality axiomEquality isectIsTypeImplies inhabitedIsType instantiate applyEquality because_Cache universeIsType lambdaEquality_alt imageElimination equalityTransitivity setElimination rename dependent_functionElimination Error :memTop,  dependent_set_memberEquality_alt equalityIstype independent_isectElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  +\mvdash{}  Compositon(A)].  \mforall{}[a:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})]\}].
\mforall{}[xx:Top].
    (comp  cA  [0(\mBbbF{})  \mvdash{}\mrightarrow{}  xx]  a  =  transprt(Gamma;cA;a))



Date html generated: 2020_05_20-PM-04_38_02
Last ObjectModification: 2020_04_14-PM-10_35_20

Theory : cubical!type!theory


Home Index