Nuprl Lemma : equals-transprt
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 +⊢ Compositon(A)]. ∀[a:{Gamma ⊢ _:(A)[0(𝕀)]}]. ∀[xx:Top].
  (comp cA [0(𝔽) ⊢→ xx] a = transprt(Gamma;cA;a) ∈ {Gamma ⊢ _:(A)[1(𝕀)]})
Proof
Definitions occuring in Statement : 
transprt: transprt(G;cA;a0)
, 
comp_term: comp cA [phi ⊢→ u] a0
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
face-0: 0(𝔽)
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
transprt: transprt(G;cA;a0)
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
prop: ℙ
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
guard: {T}
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
all: ∀x:A. B[x]
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
uimplies: b supposing a
, 
true: True
Lemmas referenced : 
istype-top, 
istype-cubical-term, 
cubical_set_cumulativity-i-j, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf, 
comp_term_wf, 
squash_wf, 
true_wf, 
constrained-cubical-term_wf, 
csm-ap-term_wf, 
context-subset_wf, 
thin-context-subset-adjoin, 
composition-function_wf, 
face-type_wf, 
face-0_wf, 
composition-function-cumulativity, 
empty-context-subset-lemma3, 
subset-cubical-term, 
context-subset-is-subset, 
empty-context-subset-lemma4, 
csm-id-adjoin_wf-interval-1, 
empty-context-subset-lemma2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
equalitySymmetry, 
hypothesis, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
applyEquality, 
because_Cache, 
universeIsType, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
setElimination, 
rename, 
dependent_functionElimination, 
Error :memTop, 
dependent_set_memberEquality_alt, 
equalityIstype, 
independent_isectElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  +\mvdash{}  Compositon(A)].  \mforall{}[a:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})]\}].
\mforall{}[xx:Top].
    (comp  cA  [0(\mBbbF{})  \mvdash{}\mrightarrow{}  xx]  a  =  transprt(Gamma;cA;a))
Date html generated:
2020_05_20-PM-04_38_02
Last ObjectModification:
2020_04_14-PM-10_35_20
Theory : cubical!type!theory
Home
Index