Nuprl Lemma : fill_term_1

[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}]. ∀[T:{H.𝕀 ⊢ _}]. ∀[u:{H.𝕀(phi)p ⊢ _:T}]. ∀[a0:{H ⊢ _:(T)[0(𝕀)][phi |⟶ u[0]]}].
[cT:H.𝕀 ⊢ Compositon(T)].
  ((fill cT [phi ⊢→ u] a0)[1(𝕀)] comp cT [phi ⊢→ u] a0 ∈ {H ⊢ _:(T)[1(𝕀)]})


Proof




Definitions occuring in Statement :  fill_term: fill cA [phi ⊢→ u] a0 comp_term: comp cA [phi ⊢→ u] a0 composition-structure: Gamma ⊢ Compositon(A) partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] composition-structure: Gamma ⊢ Compositon(A) comp_term: comp cA [phi ⊢→ u] a0 fill_term: fill cA [phi ⊢→ u] a0 comp-to-fill: comp-to-fill(Gamma;cA) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) all: x:A. B[x] member: t ∈ T guard: {T} cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) uimplies: supposing a subtype_rel: A ⊆B constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} implies:  Q true: True prop: squash: T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q same-cubical-type: Gamma ⊢ B partial-term-0: u[0] csm-ap: (s)x csm-adjoin: (s;u) csm-id: 1(X) compose: g cc-adjoin-cube: (v;u) csm-comp: F csm-m: m csm-id-adjoin: [u] interval-0: 0(𝕀) same-cubical-term: X ⊢ u=v:A cubical-type: {X ⊢ _} so_apply: x[s] so_lambda: λ2x.t[x] bdd-distributive-lattice: BoundedDistributiveLattice btrue: tt bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) face-lattice: face-lattice(T;eq) face_lattice: face_lattice(I) record-select: r.x lattice-point: Point(l) face-presheaf: 𝔽 functor-ob: ob(F) I_cube: A(I) face-type: 𝔽 pi1: fst(t) cubical-type-at: A(a) face-term-implies: Gamma ⊢ (phi  psi) context-subset: Gamma, phi cube-context-adjoin: X.A case-term: (u ∨ v) cubical-term-at: u(a) csm-ap-term: (t)s face-zero: (i=0) pi2: snd(t) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A dM0: 0 interval-presheaf: 𝕀 dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) DeMorgan-algebra: DeMorganAlgebra interval-meet: r ∧ s interval-1: 1(𝕀) face-or: (a ∨ b) dm-neg: ¬(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum dM1: 1 lattice-1: 1 fset-singleton: {x} cons: [a b] nil: [] fset-union: x ⋃ y l-union: as ⋃ bs insert: insert(a;L) eval_list: eval_list(t) deq-member: x ∈b L lattice-join: a ∨ b opposite-lattice: opposite-lattice(L) so_lambda: λ2y.t[x; y] lattice-meet: a ∧ b fset-ac-glb: fset-ac-glb(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) lattice-fset-meet: /\(s) empty-fset: {} lattice-0: 0 partial-term-1: u[1] composition-function: composition-function{j:l,i:l}(Gamma;A) cat-functor: Functor(C1;C2) ps_context: __⊢ cubical_set: CubicalSet cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) quotient: x,y:A//B[x; y] fset: fset(T) csm+: tau+ spreadn: spread4 op-cat: op-cat(C) cube-cat: CubeCat type-cat: TypeCat
Lemmas referenced :  cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf interval-1_wf csm-comp_wf csm-m_wf csm-id_wf face-or_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf_interval face-zero_wf cc-snd_wf context-subset_wf context-subset-map composition-structure_wf csm-ap-type_wf interval-0_wf partial-term-0_wf constrained-cubical-term-eqcd istype-cubical-term thin-context-subset cubical-type_wf cubical_set_wf csm-id-adjoin_wf-interval-0 sub_cubical_set_self subset-cubical-term cc-fst_wf cubical_set_cumulativity-i-j context-subset-is-subset true_wf squash_wf cubical-term_wf cubical-type-cumulativity2 cube_set_map_wf csm-comp-type csm-context-subset-subtype2 equal_wf istype-universe 0-comp-cc-fst-comp-m subtype_rel_self iff_weakening_equal csm-m-comp-1 csm-ap-id-type face-and_wf csm-ap-term-wf-subset csm-comp-term face-term-and-implies1 face-term-and-implies2 face-term-implies-subset sub_cubical_set-cumulativity1 csm-subset-domain cubical-term-eqcd context-iterated-subset case-term_wf context-adjoin-subset3 csm-context-subset-subtype3 subtype_rel_transitivity lattice-1_wf csm-face-or lattice-join_wf lattice-meet_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set cc-fst-comp-csm-m-term nat_wf fset_wf I_cube_wf cubical-term-at_wf face_lattice_wf lattice-point_wf I_cube_pair_redex_lemma face-or-eq-1 fl-eq_wf eqtt_to_assert assert-fl-eq eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf cubical_type_at_pair_lemma cubical-type-at_wf interval-type-at-is-point lattice-0-meet dM_wf bdd-distributive-lattice-subtype-bdd-lattice DeMorgan-algebra-subtype DeMorgan-algebra_wf bdd-distributive-lattice_wf bdd-lattice_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype DeMorgan-algebra-axioms_wf istype-cubical-type-at csm-ap-term-at dM0_wf interval-type-at cubical-term-equal subset-cubical-type csm-m-comp-0 interval-meet_wf lattice-meet-idempotent bdd-distributive-lattice-subtype-lattice lattice_wf dM1_wf csm_id_adjoin_fst_term_lemma cubical-type-at_wf_face-type lattice-join-0 dM-to-FL-dM0 partial-term-1_wf iff_imp_equal_bool btrue_wf iff_functionality_wrt_iff istype-true pi1_wf_top subtype_rel_product top_wf equal_functionality_wrt_subtype_rel2 cube-set-map-subtype csm-id-adjoin_wf-interval-1 csm+_wf_interval csm-equal cat-functor_wf cat-ob_wf type-cat_wf cube-cat_wf op-cat_wf functor-ob_wf dM1-meet cube_set_restriction_pair_lemma ob_pair_lemma cat_ob_pair_lemma cat_arrow_triple_lemma context-adjoin-subset2 sub_cubical_set_transitivity context-subset-adjoin-subtype sub_cubical_set_functionality subset-cubical-term2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalHypSubstitution setElimination thin rename cut sqequalRule dependent_functionElimination instantiate introduction extract_by_obid hypothesis isectElimination hypothesisEquality because_Cache Error :memTop,  equalityTransitivity equalitySymmetry universeIsType independent_isectElimination applyEquality independent_functionElimination equalityIstype lambdaFormation_alt inhabitedIsType hyp_replacement lambdaEquality_alt baseClosed imageMemberEquality natural_numberEquality imageElimination universeEquality productElimination applyLambdaEquality productIsType independent_pairFormation dependent_set_memberEquality_alt sqequalBase cumulativity isectEquality productEquality functionExtensionality unionElimination equalityElimination dependent_pairFormation_alt promote_hyp voidElimination dependent_pairEquality_alt functionEquality

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{H.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[u:\{H.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[a0:\{H  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  u[0]]\}].  \mforall{}[cT:H.\mBbbI{}  \mvdash{}  Compositon(T)].
    ((fill  cT  [phi  \mvdash{}\mrightarrow{}  u]  a0)[1(\mBbbI{})]  =  comp  cT  [phi  \mvdash{}\mrightarrow{}  u]  a0)



Date html generated: 2020_05_20-PM-04_49_46
Last ObjectModification: 2020_05_02-PM-04_36_43

Theory : cubical!type!theory


Home Index