Nuprl Lemma : fill_term_1
∀[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}]. ∀[T:{H.𝕀 ⊢ _}]. ∀[u:{H.𝕀, (phi)p ⊢ _:T}]. ∀[a0:{H ⊢ _:(T)[0(𝕀)][phi |⟶ u[0]]}].
∀[cT:H.𝕀 ⊢ Compositon(T)].
  ((fill cT [phi ⊢→ u] a0)[1(𝕀)] = comp cT [phi ⊢→ u] a0 ∈ {H ⊢ _:(T)[1(𝕀)]})
Proof
Definitions occuring in Statement : 
fill_term: fill cA [phi ⊢→ u] a0, 
comp_term: comp cA [phi ⊢→ u] a0, 
composition-structure: Gamma ⊢ Compositon(A), 
partial-term-0: u[0], 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
context-subset: Gamma, phi, 
face-type: 𝔽, 
interval-1: 1(𝕀), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
csm-id-adjoin: [u], 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
composition-structure: Gamma ⊢ Compositon(A), 
comp_term: comp cA [phi ⊢→ u] a0, 
fill_term: fill cA [phi ⊢→ u] a0, 
comp-to-fill: comp-to-fill(Gamma;cA), 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp), 
all: ∀x:A. B[x], 
member: t ∈ T, 
guard: {T}, 
cc-snd: q, 
interval-type: 𝕀, 
cc-fst: p, 
csm-ap-type: (AF)s, 
constant-cubical-type: (X), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
implies: P ⇒ Q, 
true: True, 
prop: ℙ, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
same-cubical-type: Gamma ⊢ A = B, 
partial-term-0: u[0], 
csm-ap: (s)x, 
csm-adjoin: (s;u), 
csm-id: 1(X), 
compose: f o g, 
cc-adjoin-cube: (v;u), 
csm-comp: G o F, 
csm-m: m, 
csm-id-adjoin: [u], 
interval-0: 0(𝕀), 
same-cubical-term: X ⊢ u=v:A, 
cubical-type: {X ⊢ _}, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
bdd-distributive-lattice: BoundedDistributiveLattice, 
btrue: tt, 
bfalse: ff, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
record-update: r[x := v], 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
face-lattice: face-lattice(T;eq), 
face_lattice: face_lattice(I), 
record-select: r.x, 
lattice-point: Point(l), 
face-presheaf: 𝔽, 
functor-ob: ob(F), 
I_cube: A(I), 
face-type: 𝔽, 
pi1: fst(t), 
cubical-type-at: A(a), 
face-term-implies: Gamma ⊢ (phi ⇒ psi), 
context-subset: Gamma, phi, 
cube-context-adjoin: X.A, 
case-term: (u ∨ v), 
cubical-term-at: u(a), 
csm-ap-term: (t)s, 
face-zero: (i=0), 
pi2: snd(t), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
dM0: 0, 
interval-presheaf: 𝕀, 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
DeMorgan-algebra: DeMorganAlgebra, 
interval-meet: r ∧ s, 
interval-1: 1(𝕀), 
face-or: (a ∨ b), 
dm-neg: ¬(x), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
dM1: 1, 
lattice-1: 1, 
fset-singleton: {x}, 
cons: [a / b], 
nil: [], 
fset-union: x ⋃ y, 
l-union: as ⋃ bs, 
insert: insert(a;L), 
eval_list: eval_list(t), 
deq-member: x ∈b L, 
lattice-join: a ∨ b, 
opposite-lattice: opposite-lattice(L), 
so_lambda: λ2x y.t[x; y], 
lattice-meet: a ∧ b, 
fset-ac-glb: fset-ac-glb(eq;ac1;ac2), 
fset-minimals: fset-minimals(x,y.less[x; y]; s), 
fset-filter: {x ∈ s | P[x]}, 
filter: filter(P;l), 
lattice-fset-meet: /\(s), 
empty-fset: {}, 
lattice-0: 0, 
partial-term-1: u[1], 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
cat-functor: Functor(C1;C2), 
ps_context: __⊢, 
cubical_set: CubicalSet, 
cat-arrow: cat-arrow(C), 
cat-ob: cat-ob(C), 
quotient: x,y:A//B[x; y], 
fset: fset(T), 
csm+: tau+, 
spreadn: spread4, 
op-cat: op-cat(C), 
cube-cat: CubeCat, 
type-cat: TypeCat
Lemmas referenced : 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-id-adjoin_wf, 
interval-1_wf, 
csm-comp_wf, 
csm-m_wf, 
csm-id_wf, 
face-or_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf_interval, 
face-zero_wf, 
cc-snd_wf, 
context-subset_wf, 
context-subset-map, 
composition-structure_wf, 
csm-ap-type_wf, 
interval-0_wf, 
partial-term-0_wf, 
constrained-cubical-term-eqcd, 
istype-cubical-term, 
thin-context-subset, 
cubical-type_wf, 
cubical_set_wf, 
csm-id-adjoin_wf-interval-0, 
sub_cubical_set_self, 
subset-cubical-term, 
cc-fst_wf, 
cubical_set_cumulativity-i-j, 
context-subset-is-subset, 
true_wf, 
squash_wf, 
cubical-term_wf, 
cubical-type-cumulativity2, 
cube_set_map_wf, 
csm-comp-type, 
csm-context-subset-subtype2, 
equal_wf, 
istype-universe, 
0-comp-cc-fst-comp-m, 
subtype_rel_self, 
iff_weakening_equal, 
csm-m-comp-1, 
csm-ap-id-type, 
face-and_wf, 
csm-ap-term-wf-subset, 
csm-comp-term, 
face-term-and-implies1, 
face-term-and-implies2, 
face-term-implies-subset, 
sub_cubical_set-cumulativity1, 
csm-subset-domain, 
cubical-term-eqcd, 
context-iterated-subset, 
case-term_wf, 
context-adjoin-subset3, 
csm-context-subset-subtype3, 
subtype_rel_transitivity, 
lattice-1_wf, 
csm-face-or, 
lattice-join_wf, 
lattice-meet_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
cc-fst-comp-csm-m-term, 
nat_wf, 
fset_wf, 
I_cube_wf, 
cubical-term-at_wf, 
face_lattice_wf, 
lattice-point_wf, 
I_cube_pair_redex_lemma, 
face-or-eq-1, 
fl-eq_wf, 
eqtt_to_assert, 
assert-fl-eq, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
cubical_type_at_pair_lemma, 
cubical-type-at_wf, 
interval-type-at-is-point, 
lattice-0-meet, 
dM_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
DeMorgan-algebra-subtype, 
DeMorgan-algebra_wf, 
bdd-distributive-lattice_wf, 
bdd-lattice_wf, 
DeMorgan-algebra-structure_wf, 
DeMorgan-algebra-structure-subtype, 
DeMorgan-algebra-axioms_wf, 
istype-cubical-type-at, 
csm-ap-term-at, 
dM0_wf, 
interval-type-at, 
cubical-term-equal, 
subset-cubical-type, 
csm-m-comp-0, 
interval-meet_wf, 
lattice-meet-idempotent, 
bdd-distributive-lattice-subtype-lattice, 
lattice_wf, 
dM1_wf, 
csm_id_adjoin_fst_term_lemma, 
cubical-type-at_wf_face-type, 
lattice-join-0, 
dM-to-FL-dM0, 
partial-term-1_wf, 
iff_imp_equal_bool, 
btrue_wf, 
iff_functionality_wrt_iff, 
istype-true, 
pi1_wf_top, 
subtype_rel_product, 
top_wf, 
equal_functionality_wrt_subtype_rel2, 
cube-set-map-subtype, 
csm-id-adjoin_wf-interval-1, 
csm+_wf_interval, 
csm-equal, 
cat-functor_wf, 
cat-ob_wf, 
type-cat_wf, 
cube-cat_wf, 
op-cat_wf, 
functor-ob_wf, 
dM1-meet, 
cube_set_restriction_pair_lemma, 
ob_pair_lemma, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
context-adjoin-subset2, 
sub_cubical_set_transitivity, 
context-subset-adjoin-subtype, 
sub_cubical_set_functionality, 
subset-cubical-term2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
sqequalRule, 
dependent_functionElimination, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
independent_isectElimination, 
applyEquality, 
independent_functionElimination, 
equalityIstype, 
lambdaFormation_alt, 
inhabitedIsType, 
hyp_replacement, 
lambdaEquality_alt, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination, 
universeEquality, 
productElimination, 
applyLambdaEquality, 
productIsType, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
sqequalBase, 
cumulativity, 
isectEquality, 
productEquality, 
functionExtensionality, 
unionElimination, 
equalityElimination, 
dependent_pairFormation_alt, 
promote_hyp, 
voidElimination, 
dependent_pairEquality_alt, 
functionEquality
Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{H.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[u:\{H.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[a0:\{H  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  u[0]]\}].  \mforall{}[cT:H.\mBbbI{}  \mvdash{}  Compositon(T)].
    ((fill  cT  [phi  \mvdash{}\mrightarrow{}  u]  a0)[1(\mBbbI{})]  =  comp  cT  [phi  \mvdash{}\mrightarrow{}  u]  a0)
Date html generated:
2020_05_20-PM-04_49_46
Last ObjectModification:
2020_05_02-PM-04_36_43
Theory : cubical!type!theory
Home
Index