Nuprl Lemma : dM1-meet

[I:fset(ℕ)]. ∀[x:Point(dM(I))].  (1 ∧ x ∈ Point(dM(I)))


Proof




Definitions occuring in Statement :  dM1: 1 dM: dM(I) lattice-meet: a ∧ b lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  dM1: 1 uall: [x:A]. B[x] member: t ∈ T squash: T prop: subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf lattice-1-meet bdd-distributive-lattice-subtype-bdd-lattice DeMorgan-algebra-subtype DeMorgan-algebra_wf bdd-distributive-lattice_wf bdd-lattice_wf iff_weakening_equal fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality instantiate productEquality independent_isectElimination cumulativity because_Cache natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:Point(dM(I))].    (1  \mwedge{}  x  =  x)



Date html generated: 2018_05_23-AM-08_27_18
Last ObjectModification: 2017_11_29-PM-02_22_26

Theory : cubical!type!theory


Home Index