Nuprl Lemma : glue-comp_wf3

G:j⊢. ∀A:{G ⊢ _}. ∀cA:G +⊢ Compositon(A). ∀psi:{G ⊢ _:𝔽}. ∀T:{G, psi ⊢ _}. ∀cT:G, psi +⊢ Compositon(T).
f:{G, psi ⊢ _:Equiv(T;A)}.
  (comp(Glue [psi ⊢→ (T, f)] A)  ∈ G ⊢ Compositon(gluetype(G;A;psi;T;f)))


Proof




Definitions occuring in Statement :  gluetype: gluetype(Gamma;A;phi;T;f) glue-comp: comp(Glue [phi ⊢→ (T, f)] A)  composition-structure: Gamma ⊢ Compositon(A) cubical-equiv: Equiv(T;A) context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  gluetype: gluetype(Gamma;A;phi;T;f)
Lemmas referenced :  glue-comp_wf2
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}G:j\mvdash{}.  \mforall{}A:\{G  \mvdash{}  \_\}.  \mforall{}cA:G  +\mvdash{}  Compositon(A).  \mforall{}psi:\{G  \mvdash{}  \_:\mBbbF{}\}.  \mforall{}T:\{G,  psi  \mvdash{}  \_\}.
\mforall{}cT:G,  psi  +\mvdash{}  Compositon(T).  \mforall{}f:\{G,  psi  \mvdash{}  \_:Equiv(T;A)\}.
    (comp(Glue  [psi  \mvdash{}\mrightarrow{}  (T,  f)]  A)    \mmember{}  G  \mvdash{}  Compositon(gluetype(G;A;psi;T;f)))



Date html generated: 2020_05_20-PM-07_05_15
Last ObjectModification: 2020_04_25-AM-11_22_11

Theory : cubical!type!theory


Home Index