Nuprl Lemma : member-cubical-fun-p

[X:j⊢]. ∀[A,B,T:{X ⊢ _}]. ∀[x:{X ⊢ _:(A ⟶ B)}].  ((x)p ∈ {X.T ⊢ _:((A)p ⟶ (B)p)})


Proof




Definitions occuring in Statement :  cubical-fun: (A ⟶ B) cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cubical-fun: (A ⟶ B) presheaf-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) cube-cat: CubeCat all: x:A. B[x] cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x cc-fst: p psc-fst: p cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) csm-ap-term: (t)s pscm-ap-term: (t)s
Lemmas referenced :  member-presheaf-fun-p cube-cat_wf cubical-type-sq-presheaf-type cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma cubical-term-sq-presheaf-term
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop,  dependent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A,B,T:\{X  \mvdash{}  \_\}].  \mforall{}[x:\{X  \mvdash{}  \_:(A  {}\mrightarrow{}  B)\}].    ((x)p  \mmember{}  \{X.T  \mvdash{}  \_:((A)p  {}\mrightarrow{}  (B)p)\})



Date html generated: 2020_05_20-PM-02_24_11
Last ObjectModification: 2020_04_03-PM-08_34_31

Theory : cubical!type!theory


Home Index