Step
*
1
of Lemma
nh-id-right
1. I : fset(ℕ)
2. J : fset(ℕ)
3. f : names(J) ⟶ Point(dM(I))
4. x : names(J)
5. v : {g:dma-hom(free-DeMorgan-algebra(names(J);NamesDeq);free-DeMorgan-algebra(names(I);NamesDeq))|
∀i:names(J). ((g <i>) = (f i) ∈ Point(free-DeMorgan-algebra(names(I);NamesDeq)))}
6. free-dma-lift(names(J);NamesDeq;free-DeMorgan-algebra(names(I);NamesDeq);free-dml-deq(names(I);NamesDeq);f)
= v
∈ {g:dma-hom(free-DeMorgan-algebra(names(J);NamesDeq);free-DeMorgan-algebra(names(I);NamesDeq))|
∀i:names(J). ((g <i>) = (f i) ∈ Point(free-DeMorgan-algebra(names(I);NamesDeq)))}
⊢ ((v o (λx.<x>)) x) = (f x) ∈ Point(dM(I))
BY
{ (D -2 THEN Reduce 0 THEN Auto) }
Latex:
Latex:
1. I : fset(\mBbbN{})
2. J : fset(\mBbbN{})
3. f : names(J) {}\mrightarrow{} Point(dM(I))
4. x : names(J)
5. v : \{g:dma-hom(free-DeMorgan-algebra(names(J);NamesDeq);free-DeMorgan-algebra(names(I);...))|
\mforall{}i:names(J). ((g <i>) = (f i))\}
6. free-dma-lift(names(J);NamesDeq;free-DeMorgan-algebra(names(I);NamesDeq);free-dml-deq(...;...);f)
= v
\mvdash{} ((v o (\mlambda{}x.<x>)) x) = (f x)
By
Latex:
(D -2 THEN Reduce 0 THEN Auto)
Home
Index