Step * 1 of Lemma path-trans_wf


1. CubicalSet{j}
2. {G ⊢ _:c𝕌}
3. {G ⊢ _:c𝕌}
4. {G ⊢ _:(Path_c𝕌 B)}
⊢ {G ⊢ _:((decode(path-eta(p)))[0(𝕀)] ⟶ (decode(path-eta(p)))[1(𝕀)])} {G ⊢ _:(decode(A) ⟶ decode(B))} ∈ 𝕌{[i j']}
BY
(RepeatFor (EqCDA) THEN (RWO "csm-universe-decode" THENA Auto) THEN (RWW "path-eta-0 path-eta-1" THENA Auto)) }

1
1. CubicalSet{j}
2. {G ⊢ _:c𝕌}
3. {G ⊢ _:c𝕌}
4. {G ⊢ _:(Path_c𝕌 B)}
⊢ decode(p 0(𝕀)) decode(A) ∈ {G ⊢ _}

2
1. CubicalSet{j}
2. {G ⊢ _:c𝕌}
3. {G ⊢ _:c𝕌}
4. {G ⊢ _:(Path_c𝕌 B)}
⊢ decode(p 1(𝕀)) decode(B) ∈ {G ⊢ _}


Latex:


Latex:

1.  G  :  CubicalSet\{j\}
2.  A  :  \{G  \mvdash{}  \_:c\mBbbU{}\}
3.  B  :  \{G  \mvdash{}  \_:c\mBbbU{}\}
4.  p  :  \{G  \mvdash{}  \_:(Path\_c\mBbbU{}  A  B)\}
\mvdash{}  \{G  \mvdash{}  \_:((decode(path-eta(p)))[0(\mBbbI{})]  {}\mrightarrow{}  (decode(path-eta(p)))[1(\mBbbI{})])\}
=  \{G  \mvdash{}  \_:(decode(A)  {}\mrightarrow{}  decode(B))\}


By


Latex:
(RepeatFor  2  (EqCDA)
  THEN  (RWO  "csm-universe-decode"  0  THENA  Auto)
  THEN  (RWW  "path-eta-0  path-eta-1"  0  THENA  Auto))




Home Index