Nuprl Lemma : path-trans_wf

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[p:{G ⊢ _:(Path_c𝕌 B)}].  (PathTransport(p) ∈ {G ⊢ _:(decode(A) ⟶ decode(B))})


Proof




Definitions occuring in Statement :  path-trans: PathTransport(p) universe-decode: decode(t) cubical-universe: c𝕌 path-type: (Path_A b) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T path-trans: PathTransport(p) subtype_rel: A ⊆B all: x:A. B[x] squash: T prop: true: True uimplies: supposing a cubical-path-app: pth r
Lemmas referenced :  istype-cubical-term path-type_wf cubical-universe_wf istype-cubical-universe-term cubical_set_wf cubical-fun_wf squash_wf true_wf cubical-type_wf csm-universe-decode path-eta-0 path-eta-1 cubical-term-eqcd cubical-path-app-0 universe-decode_wf subset-cubical-type sub_cubical_set_self cubical-path-app-1 path-type-subtype path-eta_wf csm-cubical-universe univ-trans_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut applyEquality equalityTransitivity hypothesis equalitySymmetry lambdaEquality_alt hyp_replacement hypothesisEquality universeIsType sqequalHypSubstitution sqequalRule axiomEquality thin instantiate extract_by_obid isectElimination isect_memberEquality_alt isectIsTypeImplies inhabitedIsType dependent_functionElimination imageElimination Error :memTop,  because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination applyLambdaEquality

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[p:\{G  \mvdash{}  \_:(Path\_c\mBbbU{}  A  B)\}].
    (PathTransport(p)  \mmember{}  \{G  \mvdash{}  \_:(decode(A)  {}\mrightarrow{}  decode(B))\})



Date html generated: 2020_05_20-PM-07_32_30
Last ObjectModification: 2020_04_29-PM-11_14_19

Theory : cubical!type!theory


Home Index