Nuprl Lemma : path-eta-0
∀[G,pth:Top].  ((path-eta(pth))[0(𝕀)] ~ pth @ 0(𝕀))
Proof
Definitions occuring in Statement : 
path-eta: path-eta(pth)
, 
cubicalpath-app: pth @ r
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
path-eta-id-adjoin, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
sqequalAxiom, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[G,pth:Top].    ((path-eta(pth))[0(\mBbbI{})]  \msim{}  pth  @  0(\mBbbI{}))
Date html generated:
2017_01_10-AM-08_54_31
Last ObjectModification:
2017_01_02-AM-10_12_16
Theory : cubical!type!theory
Home
Index