Nuprl Lemma : path-eta-id-adjoin
∀[G,u,pth:Top].  ((path-eta(pth))[u] ~ pth @ u)
Proof
Definitions occuring in Statement : 
path-eta: path-eta(pth)
, 
cubicalpath-app: pth @ r
, 
csm-id-adjoin: [u]
, 
csm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
path-eta: path-eta(pth)
, 
member: t ∈ T
, 
top: Top
, 
cubicalpath-app: pth @ r
, 
all: ∀x:A. B[x]
, 
cubical-app: app(w; u)
, 
csm-id: 1(X)
, 
csm-ap-term: (t)s
, 
csm-ap: (s)x
Lemmas referenced : 
csm-cubicalpath-app, 
csm_id_adjoin_fst_term_lemma, 
cc_snd_csm_id_adjoin_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
dependent_functionElimination, 
because_Cache
Latex:
\mforall{}[G,u,pth:Top].    ((path-eta(pth))[u]  \msim{}  pth  @  u)
Date html generated:
2017_01_10-AM-08_54_19
Last ObjectModification:
2017_01_02-AM-10_11_21
Theory : cubical!type!theory
Home
Index