Nuprl Lemma : path-eta-id-adjoin

[G,u,pth:Top].  ((path-eta(pth))[u] pth u)


Proof




Definitions occuring in Statement :  path-eta: path-eta(pth) cubicalpath-app: pth r csm-id-adjoin: [u] csm-ap-term: (t)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] path-eta: path-eta(pth) member: t ∈ T top: Top cubicalpath-app: pth r all: x:A. B[x] cubical-app: app(w; u) csm-id: 1(X) csm-ap-term: (t)s csm-ap: (s)x
Lemmas referenced :  csm-cubicalpath-app csm_id_adjoin_fst_term_lemma cc_snd_csm_id_adjoin_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis dependent_functionElimination because_Cache

Latex:
\mforall{}[G,u,pth:Top].    ((path-eta(pth))[u]  \msim{}  pth  @  u)



Date html generated: 2017_01_10-AM-08_54_19
Last ObjectModification: 2017_01_02-AM-10_11_21

Theory : cubical!type!theory


Home Index