Nuprl Lemma : univ-trans_wf

[G:j⊢]. ∀[T:{G.𝕀 ⊢ _:c𝕌}].  (univ-trans(G;T) ∈ {G ⊢ _:((decode(T))[0(𝕀)] ⟶ (decode(T))[1(𝕀)])})


Proof




Definitions occuring in Statement :  univ-trans: univ-trans(G;T) universe-decode: decode(t) cubical-universe: c𝕌 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-fun: (A ⟶ B) csm-id-adjoin: [u] cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T univ-trans: univ-trans(G;T) subtype_rel: A ⊆B all: x:A. B[x]
Lemmas referenced :  transprt-fun_wf universe-decode_wf cube-context-adjoin_wf interval-type_wf comp-op-to-comp-fun_wf2 cubical_set_cumulativity-i-j universe-comp-op_wf istype-cubical-universe-term cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination isect_memberEquality_alt isectIsTypeImplies inhabitedIsType universeIsType

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[T:\{G.\mBbbI{}  \mvdash{}  \_:c\mBbbU{}\}].    (univ-trans(G;T)  \mmember{}  \{G  \mvdash{}  \_:((decode(T))[0(\mBbbI{})]  {}\mrightarrow{}  (decode(T))[1(\mBbbI{})])\})



Date html generated: 2020_05_20-PM-07_31_59
Last ObjectModification: 2020_04_29-PM-11_11_05

Theory : cubical!type!theory


Home Index