Nuprl Lemma : univ-trans_wf
∀[G:j⊢]. ∀[T:{G.𝕀 ⊢ _:c𝕌}].  (univ-trans(G;T) ∈ {G ⊢ _:((decode(T))[0(𝕀)] ⟶ (decode(T))[1(𝕀)])})
Proof
Definitions occuring in Statement : 
univ-trans: univ-trans(G;T)
, 
universe-decode: decode(t)
, 
cubical-universe: c𝕌
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
cubical-fun: (A ⟶ B)
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
univ-trans: univ-trans(G;T)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
Lemmas referenced : 
transprt-fun_wf, 
universe-decode_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
comp-op-to-comp-fun_wf2, 
cubical_set_cumulativity-i-j, 
universe-comp-op_wf, 
istype-cubical-universe-term, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
hypothesis, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
universeIsType
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[T:\{G.\mBbbI{}  \mvdash{}  \_:c\mBbbU{}\}].    (univ-trans(G;T)  \mmember{}  \{G  \mvdash{}  \_:((decode(T))[0(\mBbbI{})]  {}\mrightarrow{}  (decode(T))[1(\mBbbI{})])\})
Date html generated:
2020_05_20-PM-07_31_59
Last ObjectModification:
2020_04_29-PM-11_11_05
Theory : cubical!type!theory
Home
Index