Nuprl Lemma : path-eta-1

[G,pth:Top].  ((path-eta(pth))[1(𝕀)] pth 1(𝕀))


Proof




Definitions occuring in Statement :  path-eta: path-eta(pth) cubicalpath-app: pth r interval-1: 1(𝕀) csm-id-adjoin: [u] csm-ap-term: (t)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top
Lemmas referenced :  path-eta-id-adjoin top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation sqequalAxiom hypothesisEquality because_Cache

Latex:
\mforall{}[G,pth:Top].    ((path-eta(pth))[1(\mBbbI{})]  \msim{}  pth  @  1(\mBbbI{}))



Date html generated: 2017_01_10-AM-08_54_43
Last ObjectModification: 2017_01_02-AM-10_12_58

Theory : cubical!type!theory


Home Index