Step
*
of Lemma
pi-comp-lambda_wf
No Annotations
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)]. ∀[phi:𝔽(I)].
∀[mu:{I+i,s(phi) ⊢ _:(ΠA B)<rho> o iota}]. ∀[lambda:cubical-path-0(Gamma;ΠA B;I;i;rho;phi;mu)]. ∀[J:fset(ℕ)].
∀[f:J ⟶ I]. ∀[j:{j:ℕ| ¬j ∈ J} ]. ∀[nu:A(r_j(f,i=1-j(rho)))].
  (pi-comp-lambda(Gamma;A;I;i;rho;lambda;J;f;j;nu)
   ∈ cubical-path-0(Gamma.A;B;J;j;(f,i=j(rho);nu);f(phi);pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu)))
BY
{ (Auto THEN D -5) }
1
1. Gamma : CubicalSet{j}
2. A : {Gamma ⊢ _}
3. B : {Gamma.A ⊢ _}
4. I : fset(ℕ)
5. i : {i:ℕ| ¬i ∈ I} 
6. rho : Gamma(I+i)
7. phi : 𝔽(I)
8. mu : {I+i,s(phi) ⊢ _:(ΠA B)<rho> o iota}
9. lambda : ΠA B((i0)(rho))
10. cubical-path-condition(Gamma;ΠA B;I;i;rho;phi;mu;lambda)
11. J : fset(ℕ)
12. f : J ⟶ I
13. j : {j:ℕ| ¬j ∈ J} 
14. nu : A(r_j(f,i=1-j(rho)))
⊢ pi-comp-lambda(Gamma;A;I;i;rho;lambda;J;f;j;nu)
  ∈ cubical-path-0(Gamma.A;B;J;j;(f,i=j(rho);nu);f(phi);pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu))
Latex:
Latex:
No  Annotations
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].
\mforall{}[rho:Gamma(I+i)].  \mforall{}[phi:\mBbbF{}(I)].  \mforall{}[mu:\{I+i,s(phi)  \mvdash{}  \_:(\mPi{}A  B)<rho>  o  iota\}].
\mforall{}[lambda:cubical-path-0(Gamma;\mPi{}A  B;I;i;rho;phi;mu)].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].
\mforall{}[nu:A(r\_j(f,i=1-j(rho)))].
    (pi-comp-lambda(Gamma;A;I;i;rho;lambda;J;f;j;nu)
      \mmember{}  cubical-path-0(Gamma.A;B;J;j;(f,i=j(rho);nu);f(phi);pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;
                                                                                                                                          nu)))
By
Latex:
(Auto  THEN  D  -5)
Home
Index