Nuprl Lemma : pi-comp-lambda_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)]. ∀[phi:𝔽(I)].
[mu:{I+i,s(phi) ⊢ _:(ΠB)<rho> iota}]. ∀[lambda:cubical-path-0(Gamma;ΠB;I;i;rho;phi;mu)]. ∀[J:fset(ℕ)].
[f:J ⟶ I]. ∀[j:{j:ℕ| ¬j ∈ J} ]. ∀[nu:A(r_j(f,i=1-j(rho)))].
  (pi-comp-lambda(Gamma;A;I;i;rho;lambda;J;f;j;nu)
   ∈ cubical-path-0(Gamma.A;B;J;j;(f,i=j(rho);nu);f(phi);pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu)))


Proof




Definitions occuring in Statement :  pi-comp-lambda: pi-comp-lambda(Gamma;A;I;i;rho;lambda;J;f;j;nu) pi-comp-app: pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-pi: ΠB cc-adjoin-cube: (v;u) cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-at: A(a) cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-r': g,i=1-j nc-e': g,i=j nc-r: r_i nc-s: s add-name: I+i names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] cubical-pi: ΠB cubical-pi-family: cubical-pi-family(X;A;B;I;a) squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q true: True pi-comp-lambda: pi-comp-lambda(Gamma;A;I;i;rho;lambda;J;f;j;nu) cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) name-morph-satisfies: (psi f) 1 bdd-distributive-lattice: BoundedDistributiveLattice I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt pi-comp-app: pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu) cubical-term-at: u(a) cubical-app: app(w; u) canonical-section: canonical-section(Gamma;A;I;rho;a) subset-iota: iota csm-ap-term: (t)s csm-ap: (s)x subset-trans: subset-trans(I;J;f;x) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum cube-set-restriction: f(s) pi2: snd(t) context-map: <rho> csm-comp: F compose: g functor-arrow: arrow(F) cubical-type-at: A(a) cubical-type-ap-morph: (u f) cube-context-adjoin: X.A cc-adjoin-cube: (v;u)
Lemmas referenced :  istype-cubical-type-at add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le cube-set-restriction_wf nc-r_wf trivial-member-add-name1 nc-r'_wf istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void names-hom_wf cubical-path-0_wf cubical_set_cumulativity-i-j cubical-pi_wf cubical-type-cumulativity2 cubical-term_wf cubical-subset_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf fset_wf cubical-type_wf cube-context-adjoin_wf cubical_set_wf cubical_type_at_pair_lemma cubical-type-at_wf cc-adjoin-cube-restriction cc-adjoin-cube_wf equal_wf cube-set-restriction-comp nc-0_wf nc-e'_wf subtype_rel_self iff_weakening_equal nh-comp_wf nc-e'-lemma2 cubical-type-ap-morph_wf nc-r'-r subtype_rel-equal nc-r'-nc-1 squash_wf true_wf istype-universe r-comp-nc-0 cubical-path-condition_wf pi-comp-app_wf cubical-subset-I_cube name-morph-satisfies_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf fl-morph-restriction nh-comp-assoc nh-id-left s-comp-nc-0 fl-morph_wf nh-id-right cubical-term-at_wf csm-ap-type-at cube-set-restriction-id cubical-type-ap-morph-comp-general nh-id_wf cubical-type-ap-morph-comp subtype_rel_dep_function cubical-type-ap-morph-comp-eq face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination hypothesisEquality dependent_set_memberEquality_alt dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination because_Cache isect_memberEquality_alt isectIsTypeImplies inhabitedIsType setIsType functionIsType applyEquality intEquality instantiate imageElimination imageMemberEquality baseClosed universeEquality productElimination hyp_replacement lambdaFormation_alt productEquality cumulativity isectEquality applyLambdaEquality productIsType equalityIstype functionEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].
\mforall{}[rho:Gamma(I+i)].  \mforall{}[phi:\mBbbF{}(I)].  \mforall{}[mu:\{I+i,s(phi)  \mvdash{}  \_:(\mPi{}A  B)<rho>  o  iota\}].
\mforall{}[lambda:cubical-path-0(Gamma;\mPi{}A  B;I;i;rho;phi;mu)].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].
\mforall{}[nu:A(r\_j(f,i=1-j(rho)))].
    (pi-comp-lambda(Gamma;A;I;i;rho;lambda;J;f;j;nu)
      \mmember{}  cubical-path-0(Gamma.A;B;J;j;(f,i=j(rho);nu);f(phi);pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;
                                                                                                                                          nu)))



Date html generated: 2020_05_20-PM-03_59_27
Last ObjectModification: 2020_04_09-PM-08_17_26

Theory : cubical!type!theory


Home Index