Nuprl Lemma : nc-r'_wf

[I,J:fset(ℕ)]. ∀[i,j:ℕ]. ∀[g:J ⟶ I].  (g,i=1-j ∈ J+j ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-r': g,i=1-j add-name: I+i names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nc-r': g,i=1-j names-hom: I ⟶ J names: names(I) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int dM_opp_wf add-name_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int names_wf not-added-name dM-point-subtype f-subset-add-name names-hom_wf fset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution functionExtensionality sqequalRule extract_by_obid isectElimination thin setElimination rename because_Cache hypothesis lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination hypothesisEquality dependent_functionElimination dependent_set_memberEquality applyEquality intEquality lambdaEquality natural_numberEquality equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp instantiate cumulativity independent_functionElimination voidElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[i,j:\mBbbN{}].  \mforall{}[g:J  {}\mrightarrow{}  I].    (g,i=1-j  \mmember{}  J+j  {}\mrightarrow{}  I+i)



Date html generated: 2017_10_05-AM-01_05_48
Last ObjectModification: 2017_07_28-AM-09_27_34

Theory : cubical!type!theory


Home Index