Nuprl Lemma : cubical-type-ap-morph-comp-eq

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[I,J,K:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[g:K ⟶ J]. ∀[a:X(I)]. ∀[b:X(J)]. ∀[u:A(a)].
  ((u f) g) (u f ⋅ g) ∈ A(f ⋅ g(a)) supposing f(a) ∈ X(J)


Proof




Definitions occuring in Statement :  cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-type: {X ⊢ _} cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: subtype_rel: A ⊆B true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf istype-universe cubical-type-at_wf cube-set-restriction_wf nh-comp_wf cubical-type-ap-morph-comp-eq-general cubical-type-ap-morph_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 subtype_rel_self iff_weakening_equal istype-cubical-type-at I_cube_wf names-hom_wf fset_wf nat_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut applyEquality thin lambdaEquality_alt sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType instantiate universeEquality independent_isectElimination sqequalRule natural_numberEquality imageMemberEquality baseClosed because_Cache productElimination independent_functionElimination equalityIstype inhabitedIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I,J,K:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[g:K  {}\mrightarrow{}  J].  \mforall{}[a:X(I)].  \mforall{}[b:X(J)].  \mforall{}[u:A(a)].
    ((u  a  f)  b  g)  =  (u  a  f  \mcdot{}  g)  supposing  b  =  f(a)



Date html generated: 2020_05_20-PM-01_48_32
Last ObjectModification: 2020_04_03-PM-08_26_09

Theory : cubical!type!theory


Home Index