Nuprl Lemma : nc-r'-r

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[j:{i:ℕ| ¬i ∈ J} ].  (f,i=1-j ⋅ r_j f,i=j ∈ J+j ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-r': g,i=1-j nc-e': g,i=j nc-r: r_i add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T names-hom: I ⟶ J prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a nat: so_apply: x[s] top: Top nc-e': g,i=j nc-r': g,i=1-j compose: g names: names(I) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False DeMorgan-algebra: DeMorganAlgebra true: True nc-r: r_i squash: T iff: ⇐⇒ Q rev_implies:  Q nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A sq_stable: SqStable(P) decidable: Dec(P)
Lemmas referenced :  names_wf add-name_wf set_wf nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self names-hom_wf fset_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int not-added-name lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf nc-r_wf trivial-member-add-name1 dM_inc_wf dma-neg-dM_opp iff_weakening_equal nat_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf f-subset-add-name f-subset_wf names-subtype nh-comp-sq squash_wf true_wf dM-lift-opp dM-lift-is-id2 deq_wf sq_stable__fset-member sq_stable__not decidable__le intformand_wf intformle_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename hypothesis sqequalRule lambdaEquality applyEquality intEquality independent_isectElimination because_Cache natural_numberEquality isect_memberEquality axiomEquality voidElimination voidEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination productEquality universeEquality dependent_set_memberEquality imageElimination imageMemberEquality baseClosed int_eqEquality computeAll addLevel hyp_replacement independent_pairFormation levelHypothesis

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[j:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  J\}  ].
    (f,i=1-j  \mcdot{}  r\_j  =  f,i=j)



Date html generated: 2017_10_05-AM-01_06_03
Last ObjectModification: 2017_07_28-AM-09_27_41

Theory : cubical!type!theory


Home Index