Nuprl Lemma : nc-r_wf

[I:fset(ℕ)]. ∀[i:ℕ].  r_i ∈ I ⟶ supposing i ∈ I


Proof




Definitions occuring in Statement :  nc-r: r_i names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  names-hom: I ⟶ J uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nc-r: r_i names: names(I) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int dM_opp_wf fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int dM_inc_wf names_wf fset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination hypothesisEquality dependent_set_memberEquality applyEquality intEquality natural_numberEquality equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    r\_i  \mmember{}  I  {}\mrightarrow{}  I  supposing  i  \mmember{}  I



Date html generated: 2017_10_05-AM-01_02_04
Last ObjectModification: 2017_07_28-AM-09_26_06

Theory : cubical!type!theory


Home Index