Nuprl Lemma : pi-comp-app_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)]. ∀[phi:𝔽(I)].
[mu:{I+i,s(phi) ⊢ _:(ΠB)<rho> iota}]. ∀[J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[j:{j:ℕ| ¬j ∈ J} ]. ∀[nu:A(r_j(f,i=1-j(rho)))].
  (pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu) ∈ {J+j,s(f(phi)) ⊢ _:(B)<(f,i=j(rho);nu)> iota})


Proof




Definitions occuring in Statement :  pi-comp-app: pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu) cubical-pi: ΠB cc-adjoin-cube: (v;u) cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-at: A(a) cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-r': g,i=1-j nc-e': g,i=j nc-r: r_i nc-s: s add-name: I+i names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pi-comp-app: pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu) nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] true: True squash: T guard: {T} iff: ⇐⇒ Q cubical-type: {X ⊢ _} subset-iota: iota csm-comp: F cc-fst: p csm-ap-type: (AF)s compose: g csm-ap: (s)x rev_implies:  Q cc-snd: q cube-context-adjoin: X.A context-map: <rho> csm-adjoin: (s;u) csm-id-adjoin: [u] functor-arrow: arrow(F) pi2: snd(t) pi1: fst(t) cc-adjoin-cube: (v;u) canonical-section: canonical-section(Gamma;A;I;rho;a) csm-ap-term: (t)s csm-id: 1(X) cube-set-restriction: f(s) cubical-apply: cubical-apply(w;u)
Lemmas referenced :  istype-cubical-type-at add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le cube-set-restriction_wf nc-r_wf trivial-member-add-name1 nc-r'_wf istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void names-hom_wf cubical-term_wf cubical-subset_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf cubical_set_cumulativity-i-j cubical-pi_wf cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf fset_wf cubical-type_wf cube-context-adjoin_wf cubical-type-cumulativity2 cubical_set_wf csm-ap-term_wf fl-morph_wf nc-e'_wf subset-trans_wf member_wf squash_wf true_wf istype-universe csm-ap-comp-type iff_weakening_equal csm-cubical-pi cc-snd_wf cc-fst_wf canonical-section_wf subtype_rel-equal cubical-type-at_wf equal_wf cube-set-restriction-comp nc-r'-r subtype_rel_self subset-trans-iota-lemma fl-morph-restriction nc-e'-lemma3 nh-comp_wf csm-id-adjoin_wf csm-adjoin_wf equal_functionality_wrt_subtype_rel2 cube_set_map_wf cc-adjoin-cube_wf csm-equal2 subset-cubical-term2 sub_cubical_set_self cubical-subset-I_cube I_cube_pair_redex_lemma arrow_pair_lemma cubical-type-ap-morph_wf subtype_rel_weakening ext-eq_weakening cubical-apply_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin hypothesisEquality dependent_set_memberEquality_alt setElimination rename dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination because_Cache isect_memberEquality_alt isectIsTypeImplies inhabitedIsType setIsType functionIsType applyEquality intEquality instantiate imageElimination universeEquality imageMemberEquality baseClosed productElimination hyp_replacement lambdaFormation_alt equalityIstype cumulativity dependent_pairEquality_alt

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].
\mforall{}[rho:Gamma(I+i)].  \mforall{}[phi:\mBbbF{}(I)].  \mforall{}[mu:\{I+i,s(phi)  \mvdash{}  \_:(\mPi{}A  B)<rho>  o  iota\}].  \mforall{}[J:fset(\mBbbN{})].
\mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].  \mforall{}[nu:A(r\_j(f,i=1-j(rho)))].
    (pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu)  \mmember{}  \{J+j,s(f(phi))  \mvdash{}  \_:(B)<(f,i=j(rho);nu)>  o  iota\})



Date html generated: 2020_05_20-PM-03_58_58
Last ObjectModification: 2020_04_09-PM-07_56_09

Theory : cubical!type!theory


Home Index