Nuprl Lemma : pi-comp-app_wf
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)]. ∀[phi:𝔽(I)].
∀[mu:{I+i,s(phi) ⊢ _:(ΠA B)<rho> o iota}]. ∀[J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[j:{j:ℕ| ¬j ∈ J} ]. ∀[nu:A(r_j(f,i=1-j(rho)))].
  (pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu) ∈ {J+j,s(f(phi)) ⊢ _:(B)<(f,i=j(rho);nu)> o iota})
Proof
Definitions occuring in Statement : 
pi-comp-app: pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu)
, 
cubical-pi: ΠA B
, 
cc-adjoin-cube: (v;u)
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type-at: A(a)
, 
cubical-type: {X ⊢ _}
, 
subset-iota: iota
, 
cubical-subset: I,psi
, 
face-presheaf: 𝔽
, 
csm-comp: G o F
, 
context-map: <rho>
, 
formal-cube: formal-cube(I)
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
nc-r': g,i=1-j
, 
nc-e': g,i=j
, 
nc-r: r_i
, 
nc-s: s
, 
add-name: I+i
, 
names-hom: I ⟶ J
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pi-comp-app: pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
cubical-type: {X ⊢ _}
, 
subset-iota: iota
, 
csm-comp: G o F
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
compose: f o g
, 
csm-ap: (s)x
, 
rev_implies: P 
⇐ Q
, 
cc-snd: q
, 
cube-context-adjoin: X.A
, 
context-map: <rho>
, 
csm-adjoin: (s;u)
, 
csm-id-adjoin: [u]
, 
functor-arrow: arrow(F)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
cc-adjoin-cube: (v;u)
, 
canonical-section: canonical-section(Gamma;A;I;rho;a)
, 
csm-ap-term: (t)s
, 
csm-id: 1(X)
, 
cube-set-restriction: f(s)
, 
cubical-apply: cubical-apply(w;u)
Lemmas referenced : 
istype-cubical-type-at, 
add-name_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
cube-set-restriction_wf, 
nc-r_wf, 
trivial-member-add-name1, 
nc-r'_wf, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
names-hom_wf, 
cubical-term_wf, 
cubical-subset_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
cubical-pi_wf, 
cubical-type-cumulativity, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
I_cube_wf, 
fset_wf, 
cubical-type_wf, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cubical_set_wf, 
csm-ap-term_wf, 
fl-morph_wf, 
nc-e'_wf, 
subset-trans_wf, 
member_wf, 
squash_wf, 
true_wf, 
istype-universe, 
csm-ap-comp-type, 
iff_weakening_equal, 
csm-cubical-pi, 
cc-snd_wf, 
cc-fst_wf, 
canonical-section_wf, 
subtype_rel-equal, 
cubical-type-at_wf, 
equal_wf, 
cube-set-restriction-comp, 
nc-r'-r, 
subtype_rel_self, 
subset-trans-iota-lemma, 
fl-morph-restriction, 
nc-e'-lemma3, 
nh-comp_wf, 
csm-id-adjoin_wf, 
csm-adjoin_wf, 
equal_functionality_wrt_subtype_rel2, 
cube_set_map_wf, 
cc-adjoin-cube_wf, 
csm-equal2, 
subset-cubical-term2, 
sub_cubical_set_self, 
cubical-subset-I_cube, 
I_cube_pair_redex_lemma, 
arrow_pair_lemma, 
cubical-type-ap-morph_wf, 
subtype_rel_weakening, 
ext-eq_weakening, 
cubical-apply_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
because_Cache, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
setIsType, 
functionIsType, 
applyEquality, 
intEquality, 
instantiate, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
hyp_replacement, 
lambdaFormation_alt, 
equalityIstype, 
cumulativity, 
dependent_pairEquality_alt
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].
\mforall{}[rho:Gamma(I+i)].  \mforall{}[phi:\mBbbF{}(I)].  \mforall{}[mu:\{I+i,s(phi)  \mvdash{}  \_:(\mPi{}A  B)<rho>  o  iota\}].  \mforall{}[J:fset(\mBbbN{})].
\mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].  \mforall{}[nu:A(r\_j(f,i=1-j(rho)))].
    (pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu)  \mmember{}  \{J+j,s(f(phi))  \mvdash{}  \_:(B)<(f,i=j(rho);nu)>  o  iota\})
Date html generated:
2020_05_20-PM-03_58_58
Last ObjectModification:
2020_04_09-PM-07_56_09
Theory : cubical!type!theory
Home
Index