Nuprl Lemma : subset-trans-iota-lemma

Gamma:j⊢. ∀I:fset(ℕ). ∀rho:Gamma(I). ∀phi:𝔽(I). ∀J:fset(ℕ). ∀f:J ⟶ I.
  (<rho> iota subset-trans(I;J;f;phi) = <f(rho)> iota ∈ J,(phi)<f> j⟶ Gamma)


Proof




Definitions occuring in Statement :  subset-trans: subset-trans(I;J;f;x) subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 fl-morph: <f> csm-comp: F context-map: <rho> cube_set_map: A ⟶ B formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet names-hom: I ⟶ J fset: fset(T) nat: all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a context-map: <rho> subset-iota: iota csm-comp: F subset-trans: subset-trans(I;J;f;x) compose: g functor-arrow: arrow(F) cube-set-restriction: f(s)
Lemmas referenced :  names-hom_wf I_cube_wf face-presheaf_wf2 fset_wf nat_wf csm-equal2 cubical-subset_wf fl-morph_wf subtype_rel_self lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf csm-comp_wf subset-trans_wf formal-cube_wf subset-iota_wf context-map_wf cube-set-restriction_wf cubical-subset-I_cube cube-set-restriction-comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality inhabitedIsType because_Cache instantiate applyEquality lambdaEquality_alt setElimination rename equalityTransitivity equalitySymmetry sqequalRule productEquality cumulativity isectEquality independent_isectElimination dependent_functionElimination Error :memTop

Latex:
\mforall{}Gamma:j\mvdash{}.  \mforall{}I:fset(\mBbbN{}).  \mforall{}rho:Gamma(I).  \mforall{}phi:\mBbbF{}(I).  \mforall{}J:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.
    (<rho>  o  iota  o  subset-trans(I;J;f;phi)  =  <f(rho)>  o  iota)



Date html generated: 2020_05_20-PM-01_45_54
Last ObjectModification: 2020_04_03-PM-07_56_37

Theory : cubical!type!theory


Home Index