Nuprl Lemma : subset-trans-iota-lemma
∀Gamma:j⊢. ∀I:fset(ℕ). ∀rho:Gamma(I). ∀phi:𝔽(I). ∀J:fset(ℕ). ∀f:J ⟶ I.
  (<rho> o iota o subset-trans(I;J;f;phi) = <f(rho)> o iota ∈ J,(phi)<f> j⟶ Gamma)
Proof
Definitions occuring in Statement : 
subset-trans: subset-trans(I;J;f;x)
, 
subset-iota: iota
, 
cubical-subset: I,psi
, 
face-presheaf: 𝔽
, 
fl-morph: <f>
, 
csm-comp: G o F
, 
context-map: <rho>
, 
cube_set_map: A ⟶ B
, 
formal-cube: formal-cube(I)
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
names-hom: I ⟶ J
, 
fset: fset(T)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
context-map: <rho>
, 
subset-iota: iota
, 
csm-comp: G o F
, 
subset-trans: subset-trans(I;J;f;x)
, 
compose: f o g
, 
functor-arrow: arrow(F)
, 
cube-set-restriction: f(s)
Lemmas referenced : 
names-hom_wf, 
I_cube_wf, 
face-presheaf_wf2, 
fset_wf, 
nat_wf, 
csm-equal2, 
cubical-subset_wf, 
fl-morph_wf, 
subtype_rel_self, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
csm-comp_wf, 
subset-trans_wf, 
formal-cube_wf, 
subset-iota_wf, 
context-map_wf, 
cube-set-restriction_wf, 
cubical-subset-I_cube, 
cube-set-restriction-comp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
inhabitedIsType, 
because_Cache, 
instantiate, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
productEquality, 
cumulativity, 
isectEquality, 
independent_isectElimination, 
dependent_functionElimination, 
Error :memTop
Latex:
\mforall{}Gamma:j\mvdash{}.  \mforall{}I:fset(\mBbbN{}).  \mforall{}rho:Gamma(I).  \mforall{}phi:\mBbbF{}(I).  \mforall{}J:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.
    (<rho>  o  iota  o  subset-trans(I;J;f;phi)  =  <f(rho)>  o  iota)
Date html generated:
2020_05_20-PM-01_45_54
Last ObjectModification:
2020_04_03-PM-07_56_37
Theory : cubical!type!theory
Home
Index