Step
*
of Lemma
satisfies-s-face-lattice-tube
∀I:fset(ℕ). ∀i:{i:ℕ| ¬i ∈ I} . ∀phi:𝔽(I). ∀j:{j:ℕ| ¬j ∈ I+i} . ∀K:fset(ℕ). ∀f:K ⟶ I+j+i.
((s(face-lattice-tube(I;phi;j)) f) = 1
⇐⇒ (s(phi) s ⋅ f) = 1 ∨ ((s ⋅ f j) = 0 ∈ Point(dM(K))) ∨ ((s ⋅ f j) = 1 ∈ Point(dM(K))))
BY
{ ((UnivCD THENA Auto)
THEN (Assert s ⋅ f ∈ K ⟶ I+j BY
Auto)
THEN (RWO "name-morph-satisfies-comp" 0 THENA Auto)
THEN RWO "satisfies-face-lattice-tube<" 0
THEN Auto) }
Latex:
Latex:
\mforall{}I:fset(\mBbbN{}). \mforall{}i:\{i:\mBbbN{}| \mneg{}i \mmember{} I\} . \mforall{}phi:\mBbbF{}(I). \mforall{}j:\{j:\mBbbN{}| \mneg{}j \mmember{} I+i\} . \mforall{}K:fset(\mBbbN{}). \mforall{}f:K {}\mrightarrow{} I+j+i.
((s(face-lattice-tube(I;phi;j)) f) = 1 \mLeftarrow{}{}\mRightarrow{} (s(phi) s \mcdot{} f) = 1 \mvee{} ((s \mcdot{} f j) = 0) \mvee{} ((s \mcdot{} f j) = 1))
By
Latex:
((UnivCD THENA Auto)
THEN (Assert s \mcdot{} f \mmember{} K {}\mrightarrow{} I+j BY
Auto)
THEN (RWO "name-morph-satisfies-comp" 0 THENA Auto)
THEN RWO "satisfies-face-lattice-tube<" 0
THEN Auto)
Home
Index