Nuprl Lemma : satisfies-s-face-lattice-tube

I:fset(ℕ). ∀i:{i:ℕ| ¬i ∈ I} . ∀phi:𝔽(I). ∀j:{j:ℕ| ¬j ∈ I+i} . ∀K:fset(ℕ). ∀f:K ⟶ I+j+i.
  ((s(face-lattice-tube(I;phi;j)) f) 1
  ⇐⇒ (s(phi) s ⋅ f) 1 ∨ ((s ⋅ j) 0 ∈ Point(dM(K))) ∨ ((s ⋅ j) 1 ∈ Point(dM(K))))


Proof




Definitions occuring in Statement :  name-morph-satisfies: (psi f) 1 face-lattice-tube: face-lattice-tube(I;phi;j) face-presheaf: 𝔽 cube-set-restriction: f(s) I_cube: A(I) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J dM1: 1 dM0: 0 dM: dM(I) lattice-point: Point(l) fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: all: x:A. B[x] iff: ⇐⇒ Q not: ¬A or: P ∨ Q set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: subtype_rel: A ⊆B I_cube: A(I) functor-ob: functor-ob(F) pi1: fst(t) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q DeMorgan-algebra: DeMorganAlgebra guard: {T} names-hom: I ⟶ J names: names(I) nat: or: P ∨ Q uiff: uiff(P;Q)
Lemmas referenced :  I_cube_wf not_wf set_wf face-presheaf_wf cube-set-restriction_wf names-deq_wf union-deq_wf fset-antichain_wf assert_wf names_wf fset_wf name-morph-satisfies-comp iff_wf dM1_wf dM0_wf strong-subtype-self le_wf strong-subtype-set3 strong-subtype-deq-subtype int-deq_wf nat_wf fset-member_wf trivial-member-add-name1 names-hom_wf DeMorgan-algebra-axioms_wf lattice-join_wf lattice-meet_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure_wf subtype_rel_transitivity DeMorgan-algebra-structure-subtype bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf DeMorgan-algebra-structure_wf subtype_rel_set dM_wf lattice-point_wf equal_wf or_wf satisfies-face-lattice-tube face-lattice-constraints_wf fset-contains-none_wf fset-all_wf subtype_rel_self fl-morph-face-lattice-tube1 name-morph-satisfies_wf f-subset-add-name nc-s_wf add-name_wf nh-comp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename hypothesis because_Cache independent_isectElimination dependent_functionElimination independent_pairFormation applyEquality sqequalRule setEquality productEquality lambdaEquality addLevel productElimination impliesFunctionality independent_functionElimination instantiate cumulativity universeEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality intEquality natural_numberEquality orFunctionality unionEquality

Latex:
\mforall{}I:fset(\mBbbN{}).  \mforall{}i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  .  \mforall{}phi:\mBbbF{}(I).  \mforall{}j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  I+i\}  .  \mforall{}K:fset(\mBbbN{}).  \mforall{}f:K  {}\mrightarrow{}  I+j+i.
    ((s(face-lattice-tube(I;phi;j))  f)  =  1  \mLeftarrow{}{}\mRightarrow{}  (s(phi)  s  \mcdot{}  f)  =  1  \mvee{}  ((s  \mcdot{}  f  j)  =  0)  \mvee{}  ((s  \mcdot{}  f  j)  =  1))



Date html generated: 2016_05_18-PM-00_20_58
Last ObjectModification: 2016_02_05-PM-05_46_56

Theory : cubical!type!theory


Home Index