Nuprl Lemma : fl-morph-face-lattice-tube1
∀[J:fset(ℕ)]. ∀[k:names(J)]. ∀[I:fset(ℕ)]. ∀[phi:Point(face_lattice(I))]. ∀[j:ℕ]. ∀[g:J ⟶ I+j].
  (face-lattice-tube(I;phi;j))<g> = (s(phi))<g> ∨ (k=0) ∨ (k=1) ∈ Point(face_lattice(J)) 
  supposing (g j) = <k> ∈ Point(dM(J))
Proof
Definitions occuring in Statement : 
face-lattice-tube: face-lattice-tube(I;phi;j)
, 
face-presheaf: 𝔽
, 
fl-morph: <f>
, 
fl1: (x=1)
, 
fl0: (x=0)
, 
face_lattice: face_lattice(I)
, 
cube-set-restriction: f(s)
, 
nc-s: s
, 
add-name: I+i
, 
names-hom: I ⟶ J
, 
dM_inc: <x>
, 
dM: dM(I)
, 
names: names(I)
, 
lattice-join: a ∨ b
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
face-lattice-tube: face-lattice-tube(I;phi;j)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
guard: {T}
, 
so_apply: x[s]
, 
names-hom: I ⟶ J
, 
all: ∀x:A. B[x]
, 
names: names(I)
, 
nat: ℕ
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
face-presheaf: 𝔽
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
Lemmas referenced : 
equal_wf, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
trivial-member-add-name1, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
add-name_wf, 
dM_inc_wf, 
names-hom_wf, 
face_lattice_wf, 
fset_wf, 
names_wf, 
cube-set-restriction_wf, 
face-presheaf_wf, 
nc-s_wf, 
f-subset-add-name, 
subtype_rel_self, 
assert_wf, 
fset-antichain_wf, 
union-deq_wf, 
names-deq_wf, 
fset-all_wf, 
fset-contains-none_wf, 
face-lattice-constraints_wf, 
fl0_wf, 
fl1_wf, 
fl-morph_wf, 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf, 
dM-to-FL_wf, 
squash_wf, 
true_wf, 
neg-dM_inc, 
iff_weakening_equal, 
dM-to-FL-opp, 
dm-neg_wf, 
subtype_rel-equal, 
free-DeMorgan-lattice_wf, 
dM-to-FL-inc, 
fl-morph-join, 
fl-morph-fl0, 
fl-morph-fl1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
because_Cache, 
dependent_functionElimination, 
dependent_set_memberEquality, 
intEquality, 
natural_numberEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
unionEquality, 
setElimination, 
rename, 
imageElimination, 
hyp_replacement, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[J:fset(\mBbbN{})].  \mforall{}[k:names(J)].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:Point(face\_lattice(I))].  \mforall{}[j:\mBbbN{}].  \mforall{}[g:J  {}\mrightarrow{}  I+j].
    (face-lattice-tube(I;phi;j))<g>  =  (s(phi))<g>  \mvee{}  (k=0)  \mvee{}  (k=1)  supposing  (g  j)  =  <k>
Date html generated:
2017_10_05-AM-01_17_19
Last ObjectModification:
2017_07_28-AM-09_33_01
Theory : cubical!type!theory
Home
Index