Nuprl Lemma : fl-morph-face-lattice-tube1

[J:fset(ℕ)]. ∀[k:names(J)]. ∀[I:fset(ℕ)]. ∀[phi:Point(face_lattice(I))]. ∀[j:ℕ]. ∀[g:J ⟶ I+j].
  (face-lattice-tube(I;phi;j))<g> (s(phi))<g> ∨ (k=0) ∨ (k=1) ∈ Point(face_lattice(J)) 
  supposing (g j) = <k> ∈ Point(dM(J))


Proof




Definitions occuring in Statement :  face-lattice-tube: face-lattice-tube(I;phi;j) face-presheaf: 𝔽 fl-morph: <f> fl1: (x=1) fl0: (x=0) face_lattice: face_lattice(I) cube-set-restriction: f(s) nc-s: s add-name: I+i names-hom: I ⟶ J dM_inc: <x> dM: dM(I) names: names(I) lattice-join: a ∨ b lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a face-lattice-tube: face-lattice-tube(I;phi;j) prop: subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] and: P ∧ Q guard: {T} so_apply: x[s] names-hom: I ⟶ J all: x:A. B[x] names: names(I) nat: bdd-distributive-lattice: BoundedDistributiveLattice lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) true: True squash: T iff: ⇐⇒ Q rev_implies:  Q implies:  Q dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq)
Lemmas referenced :  equal_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self add-name_wf dM_inc_wf names-hom_wf face_lattice_wf fset_wf names_wf cube-set-restriction_wf face-presheaf_wf nc-s_wf f-subset-add-name subtype_rel_self assert_wf fset-antichain_wf union-deq_wf names-deq_wf fset-all_wf fset-contains-none_wf face-lattice-constraints_wf fl0_wf fl1_wf fl-morph_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf dM-to-FL_wf squash_wf true_wf neg-dM_inc iff_weakening_equal dM-to-FL-opp dm-neg_wf subtype_rel-equal free-DeMorgan-lattice_wf dM-to-FL-inc fl-morph-join fl-morph-fl0 fl-morph-fl1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule instantiate lambdaEquality productEquality independent_isectElimination cumulativity universeEquality because_Cache dependent_functionElimination dependent_set_memberEquality intEquality natural_numberEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry setEquality unionEquality setElimination rename imageElimination hyp_replacement applyLambdaEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[J:fset(\mBbbN{})].  \mforall{}[k:names(J)].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:Point(face\_lattice(I))].  \mforall{}[j:\mBbbN{}].  \mforall{}[g:J  {}\mrightarrow{}  I+j].
    (face-lattice-tube(I;phi;j))<g>  =  (s(phi))<g>  \mvee{}  (k=0)  \mvee{}  (k=1)  supposing  (g  j)  =  <k>



Date html generated: 2017_10_05-AM-01_17_19
Last ObjectModification: 2017_07_28-AM-09_33_01

Theory : cubical!type!theory


Home Index